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Abstract 

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is the most prevalent 
subtype of TDP-43 proteinopathy, affecting up to 1/3rd of aged persons. LATE-NC often co-occurs with hippocampal 
sclerosis (HS) pathology. It is currently unknown why some individuals with LATE-NC develop HS while others do not, 
but genetics may play a role. Previous studies found associations between LATE-NC phenotypes and specific genes: 
TMEM106B, GRN, ABCC9, KCNMB2, and APOE. Data from research participants with genomic and autopsy measures 
from the National Alzheimer’s Coordinating Center (NACC; n = 631 subjects included) and the Religious Orders Study 
and Memory and the Rush Aging Project (ROSMAP; n = 780 included) were analyzed in the current study. Our goals 
were to reevaluate disease-associated genetic variants using newly collected data and to query whether the specific 
genotype/phenotype associations could provide new insights into disease-driving pathways. Research subjects 
included in prior LATE/HS genome-wide association studies (GWAS) were excluded. Single nucleotide variants (SNVs) 
within 10 kb of TMEM106B, GRN, ABCC9, KCNMB2, and APOE were tested for association with HS and LATE-NC, and 
separately for Alzheimer’s pathologies, i.e. amyloid plaques and neurofibrillary tangles. Significantly associated SNVs 
were identified. When results were meta-analyzed, TMEM106B, GRN, and APOE had significant gene-based associa-
tions with both LATE and HS, whereas ABCC9 had significant associations with HS only. In a sensitivity analysis limited 
to LATE-NC + cases, ABCC9 variants were again associated with HS. By contrast, the associations of TMEM106B, GRN, 
and APOE with HS were attenuated when adjusting for TDP-43 proteinopathy, indicating that these genes may be 
associated primarily with TDP-43 proteinopathy. None of these genes except APOE appeared to be associated with 
Alzheimer’s-type pathology. In summary, using data not included in prior studies of LATE or HS genomics, we rep-
licated several previously reported gene-based associations and found novel evidence that specific risk alleles can 
differentially affect LATE-NC and HS.
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Introduction
The present study focused on genetic contributions 
to transactive response DNA binding protein 43  kDa 
(TDP-43) proteinopathy and hippocampal sclero-
sis (HS). One or both of these pathologic features are 
observed in ~ 30% of brains among persons > 80 years at 
death [42]. The TDP-43 protein serves multiple func-
tions in gene expression regulation at the levels of both 
transcription and translation [14, 21, 42, 52]. TDP-43 
proteinopathy (aberrantly misfolded and mislocalized 
TDP-43 protein) is strongly associated with cogni-
tive impairment [11, 41]. This pathologic hallmark was 
discovered in diseases that are now considered to be a 
clinical-pathologic spectrum that includes amyotrophic 
lateral sclerosis (ALS) and frontotemporal lobe degen-
eration with TDP-43 (FTLD-TDP) [50].

HS is a pathologic finding characterized by selective 
neuronal loss and gliosis of the hippocampal formation 
[3, 46]. First described as a pathologic phenomenon in 
epilepsy [19], HS is a descriptive and relatively nonspe-
cific term used in both neuropathologic and neurora-
diographic practice. However, in a subset of cases with 
HS, TDP-43 proteinopathy is also present [3, 11, 35, 
46].

Limbic-predominant age-related TDP-43 encepha-
lopathy (LATE) is a prevalent disease entity character-
ized by TDP-43 proteinopathy, with greatly increased 
risk for cognitive impairment, in aged populations [42]. 
LATE is not a subtype of FTLD-TDP because the asso-
ciated disease(s) is not the frontotemporal dementia 
(FTD) clinical syndrome; rather, the presence of the 
neuropathologic changes underlying LATE (LATE-
NC) is an amnestic dementia syndrome [40–42, 59]. 
HS pathology commonly co-occurs with LATE-NC 
and was the first neuropathologic change associated 
with the condition [17, 47]. However, some persons 
with LATE-NC have no HS, segmental/patchy HS, or 
unilateral HS [25]. It is currently unknown why some 
individuals with LATE-NC develop HS pathology while 
others do not, but genetics may help explain these 
phenomena.

Several genes and single nucleotide variants (SNVs) 
have been linked with LATE-NC phenotypes [42]. 
Risk for HS was previously associated with SNVs 
that are also known FTLD-TDP risk alleles, includ-
ing rs5848 from the GRN gene on chromosome 17 and 
rs1990622 near the TMEM106B gene on chromosome 
7 [6, 16, 39, 56, 62, 65]. In a genome-wide association 
study (GWAS), a SNV in the ABCC9 gene (rs704178/

rs704180) on chromosome 12 was associated with HS 
risk [43]. A separate GWAS found that rs9637454, an 
SNV in the KCNMB2 gene on chromosome 3, was 
associated with HS risk [8]. Additional evidence exists 
linking the APOE ε4 allele, a strong risk factor for Alz-
heimer’s disease (AD), with increased HS and LATE-
NC risk [60, 66, 68]. A study analyzing gene-based 
associations between the GRN, TMEM106B, ABCC9, 
and KCNMB2 genes and HS found Bonferroni-cor-
rected significant associations for ABCC9 assuming 
a recessive mode of inheritance (MOI) and nominally 
significant associations with GRN, TMEM106B, and 
KCNMB2 [29]. However, a separate study replicated the 
associations between GRN and TMEM106B SNVs with 
LATE-NC, but did not find an association between an 
ABCC9 variant and LATE-NC or HS pathologies [23]. 
To the best of our knowledge, there has not been a prior 
study that found genomic associations with LATE-NC 
but not HS or vice versa.

In the current study, we analyzed genomic data from 
the Alzheimer’s Disease Genetics Consortium (ADGC) 
along with clinical and pathological data from the 
National Alzheimer’s Coordinating Center (NACC) and 
the Rush University Religious Orders Study and Memory 
and Aging Project (ROSMAP) to investigate the asso-
ciations between prior identified putative risk genes 
– KCNMB2, TMEM106B, ABCC9, GRN, and APOE – 
and LATE-NC. While only analyzing participants not 
included in our prior studies [29, 43], we sought to test 
whether or not previously reported LATE-NC risk genes 
can be replicated for LATE-NC neuropathologic pheno-
types (specifically, TDP-43 proteinopathy and HS) while 
also testing for the presence of novel risk alleles in those 
genes.

Material and methods
Study participants
Representative photomicrographs were taken, show-
ing results from research participants with LATE-NC 
and LATE-NC + HS, in the University of Kentucky AD 
Research Center Autopsy cohort, using methods as pre-
viously described [44].

Phenotypic data from NACC (March 2021 data freeze) 
were linked with genotype data from the ADGC. Indi-
viduals who died at age 65 years or older were included. 
Similar to other studies using NACC data [27], individu-
als were excluded from the NACC cohort if at least one 
of 19 rare brain diseases were diagnosed (See Additional 
File 1: Supplemental Table 1) or if they were missing any 
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adjustment variables or both endophenotypes under 
study.

The ROSMAP study has been described in detail else-
where [36]. Briefly, data were acquired from two well-
characterized cohort studies of aging and dementia. The 
Religious Orders Study (ROS), begun in 1994, and the 
Rush Memory and Aging Project (MAP), begun in 1997, 
involve older adults who enrolled without dementia, 
agreed to annual clinical evaluations and organ donation 
at death, and signed an Anatomical Gift Act for brain 
donation. Written informed consent was obtained from 
participants, and research was carried out in accordance 
with Institutional Review Board (IRB)-approved proto-
cols. ROSMAP data are available online at the Rush Alz-
heimer’s Disease Center Resource Sharing Hub (https:// 
www. radc. rush. edu/), as well as on the Accelerating 
Medicines Partnership-Alzheimer’s Disease (AMP-AD) 
Knowledge Portal (syn3219045).

For both the NACC and ROSMAP datasets, individuals 
were excluded from the analyses if they were included in 
either of two previous studies of HS genomics [29, 43]. 
In ROSMAP, participants were excluded based on IID if 
they were included in the Nelson et al. HS GWAS from 
2014. In NACC, HS and TDP-43 were defined using vari-
ables from the v10 NACC Neuropathology (NP) dataset 
which were not available for the participants included in 
the previous studies. Thus, the NACC and ROSMAP par-
ticipants included in the current study are a true replica-
tion cohort for these earlier HS genomics studies.

Neuropathological endophenotype definitions
In the NACC NP dataset, LATE-NC was defined as 
either present or absent using the “distribution of TDP-
43 immunoreactive inclusions” variables indicating if 
TDP-43 proteinopathy was observed in either the hip-
pocampus (NPTDPC NACC field), entorhinal/inferior 
temporal cortex (NPTDPD), or neocortex (NPTDPE) in a 
case lacking overall diagnosis of FTLD-TDP. A LATE-NC 
case was defined as definitely having TDP-43 in the hip-
pocampus, entorhinal/inferior temporal cortex, or neo-
cortex. LATE-NC was considered unknown if TDP-43 
data were unavailable in all three regions. HS was defined 
as either present or absent based on the “hippocampal 
sclerosis of CA1 and/or subiculum” (NPHIPSCL) vari-
able using the “unilateral,” “bilateral,” and “present but lat-
erality not assessed” response categories.

In the ROSMAP data set, LATE-NC was defined 
dichotomously using the “TDP-43 stage” (tdp_st4) varia-
ble and collapsing the 2nd and 3rd stages in cases lacking 
FTLD-TDP. HS was defined dichotomously by the “hip-
pocampal sclerosis was rated as definitely present with 
CA1 region affected” response category of the “definite 

presence of typical hippocampal sclerosis” (hspath_typ) 
variable.

Quality control of genotype data
For NACC participants, genomic data from the ADGC 
imputed using the Haplotype Reference Consortium 
(ADGC-HRC) were used [38]. The genetic data for ROS-
MAP were also imputed using the HRC and the methods 
have been described in detail elsewhere [18]. Standard 
GWAS quality control (QC) procedures were performed 
separately on the ADGC and ROSMAP genotype data 
using PLINK1.9 [37, 54]. SNVs were excluded if they were 
missing in more than 5% of samples, if they had a minor 
allele frequency less than 1%, or if they had Hardy–Wein-
berg Equilibrium (HWE) p-values < 1 ×  10–6 among AD 
controls. Individuals were excluded if they were missing 
more than 5% of genotypes. Two individuals were consid-
ered related if they had an identity by descent measure of 
at least 0.25, which indicates that they are second-degree 
relatives. For related pairs, the individual with the lowest 
call rate was excluded.

NACC and ROSMAP genotype data were separately 
merged with 1000 Genomes Project Phase 3 data. Prin-
cipal components (PCs) were calculated for the merged 
data sets using the “pca” procedure in PLINK1.9, and the 
first two PCs were plotted. The ADGC-HRC and ROS-
MAP individuals with first and second PCs that over-
lapped with those of the 1000 Genomes individuals of 
known European ancestry were identified and all other 
individuals were excluded from the analysis.

Variant‑level associations
All statistical analyses were conducted in R programming 
language [55], version 4.0.4. Associations between each 
endophenotype and each SNV were conducted sepa-
rately in the NACC and ROSMAP datasets using binary 
logistic regression models assuming each of the three 
most common MOI: additive, dominant, and recessive. 
SNVs were excluded from the analyses if they were multi-
allelic or if there were fewer than 15 minor alleles pre-
sent across all participants. All regression models were 
fit using the glm function in R assuming a binomial dis-
tribution and a logit link function and were adjusted for 
age at death, sex, ADGC data selection round (for NACC 
data) or ROS/MAP study (for ROSMAP data), and the 
first three genetic PCs. Odds ratios (OR) were calcu-
lated for each SNV. Since some endophenotypes were 
only available in a subset of participants, PCs were cal-
culated separately for each endophenotype. NACC and 
ROSMAP SNV-level results were meta-analyzed using a 
fixed-effect, inverse-variance meta-analysis via the meta-
gen function from the meta R package, version 4.18-0 [7]. 
For targeted analyses of previously reported SNVs, an 

https://www.radc.rush.edu/
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additive MOI was assumed unless there existed previous 
evidence of association with another MOI. Additionally, 
LATE-NC-by-SNV interaction terms were tests for mod-
els of HS and were removed if they failed to reach sta-
tistical significance (p < 0.05). Plots of cohort-specific and 
meta-analyzed SNV-level p-values were created using 
LocusZoom Standalone, version 1.4 (https:// genome. sph. 
umich. edu/ wiki/ Locus Zoom_ Stand alone) [53], and the 
ggplot2 R package, version 3.3.3 [67]. Linkage disequi-
librium estimates were computed using LDlink with the 
CEU population (https:// ldlink. nci. nih. gov/) [34]. Jaccard 
similarity coefficients were used to estimate the similarity 
between binary variables and were calculated by dividing 
the size of their intersection by the size of their union via 
the clusteval R package, version 0.1 [58].

Gene‑based associations
Gene boundaries for KCNMB2, TMEM106B, ABCC9, 
GRN, and APOE were defined based on their canonical 
transcripts using the Genome Reference Consortium 
Human Build 37 (GRCh37/hg19) gene range list from 
PLINK (https:// www. cog- genom ics. org/ plink/1. 9/ resou 
rces). All genes were flanked by an additional 10  kb to 
include potential regulatory regions. See Additional File 
1: Supplemental Table 2 for the positions used to define 
the gene boundaries.

For each gene, endophenotype, and MOI, all SNV-level 
p-values were combined using the aggregated Cauchy 
association test (ACAT) [33]. All ACAT analyses were 
run using R functions provided by the authors (https:// 
github. com/ yaowu liu/ ACAT). Equal weights were 
assumed for all SNVs in the ACAT analyses and statisti-
cal significance was defined as a p-value < 0.05.

SNV prioritization and follow‑up analyses
Prioritized SNVs were identified using a Bonferroni-
corrected threshold for significance that accounts for the 
effective number of independent tests in a given genetic 
region. The effective number of independent tests in a 
region was calculated for each endophenotype using the 
method of Gao et  al. [20]. Briefly, Pearson’s correlation 
coefficient was calculated for all pairs of SNVs and these 
coefficients were placed in a square matrix. The eigen-
values of the matrix were then computed and ordered 
from largest to smallest and the effective number of inde-
pendent tests was defined to be the smallest number of 
ordered eigenvalues that account for 99.5% of the sum of 
all eigenvalues. The Bonferroni-corrected threshold for 
identifying prioritized SNVs in a given genetic region was 
defined as 0.05 divided by the largest estimated number 
of independent tests in the region.

Prioritized SNVs were investigated for expression 
quantitative trait loci (eQTL) associations using the 

Genotype-Tissue Expression (GTEx) Project’s V8 pub-
lic data [15], the BRAINEAC Brain eQTL Almanac 
(http:// brain eac. org/) [57], and Functional Annotation of 
Human Long Noncoding RNAs via Molecular Mapping 
(FANTOM5) database (data accessed via: https:// www. 
ebi. ac. uk/ gxa/ exper iments/ E- MTAB- 3358/ Resul ts). Pri-
oritized SNVs were also investigated for associations with 
other molecular mechanisms using the INFERring the 
molecular mechanisms of NOncoding genetic variants 
(INFERNO) software assuming a threshold on  r2 of 0.5 
and a threshold on LD block size of 500 kb (http:// infer 
no. lisan wangl ab. org/ index. php) [4].

Sensitivity analyses
Additional analyses tested if the study’s results were 
dependent upon a priori analytic approaches. All gene-
based analyses were also conducted assuming 0  kb and 
25  kb of flanking around each gene. All top SNVs were 
tested for associations with AD-related neuropatholo-
gies, to see if there were indications that the HS and 
LATE-NC associations were being driven by AD. Addi-
tionally, since TDP-43 in the amygdala was not included 
in the dichotomous LATE-NC definition, all top SNVs 
were also tested for associations with LATE-NC Stage 
1 (vs. LATE-NC Stage 0) to determine if any amygdala-
specific associations were missed in the primary analyses.

Results
The phenotypes of interest in the current study are 
autopsy-confirmed LATE-NC and HS. Specific examples 
of those pathologies are depicted in Fig. 1. Some brains 
have LATE-NC without HS (Fig. 1b). However, individu-
als with LATE-NC are at increased risk of having comor-
bid HS (Fig. 1c).

The participants included and excluded, and the rea-
sons for exclusion, are shown in Fig. 2. In the ROSMAP 
data set, a total of n = 795 individuals had available 
data for at least one of the endophenotypes along with 
GWAS data and were not included in earlier studies of 
HS [29, 43]. In the NACC data set, n = 633 individuals 
had available data for at least one of the endopheno-
types along with GWAS data and were not included in 
the earlier studies of HS [29, 43]. While not all FTLD 
subtypes were explicitly excluded among NACC partic-
ipants, no FTLD cases were included in the final sample 
likely due inclusion criteria applied by the ADGC dur-
ing genotyping. Table 1 shows a summary of individual 
characteristics and endophenotypes for both NACC 
and ROSMAP participants. ROSMAP participants 
tended to be older at death (p < 0.001), were more likely 
to be female (p < 0.001), and were less likely to be an HS 
case (p = 0.007) than NACC participants. HS was less 
prevalent than LATE-NC in both cohorts (NACC: HS 

https://genome.sph.umich.edu/wiki/LocusZoom_Standalone
https://genome.sph.umich.edu/wiki/LocusZoom_Standalone
https://ldlink.nci.nih.gov/
https://www.cog-genomics.org/plink/1.9/resources
https://www.cog-genomics.org/plink/1.9/resources
https://github.com/yaowuliu/ACAT
https://github.com/yaowuliu/ACAT
http://braineac.org/
https://www.ebi.ac.uk/gxa/experiments/E-MTAB-3358/Results
https://www.ebi.ac.uk/gxa/experiments/E-MTAB-3358/Results
http://inferno.lisanwanglab.org/index.php
http://inferno.lisanwanglab.org/index.php
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14.1%, LATE-NC 29.4%; ROSMAP: HS 9.4%, LATE-
NC 33.2%). In ROSMAP, both HS cases and LATE-
NC cases tended to be older at death (both p < 0.001) 
and were less likely to be male (p = 0.054 and p < 0.001, 
respectively) than their respective controls. There were 
no identified statistically significant differences in basic 
demographic characteristics between HS and/or LATE-
NC cases and their respective controls in NACC. Addi-
tional participant characteristics stratified by combined 

LATE-NC and HS case status are included in Addi-
tional File 1: Supplemental Tables 4 and 5.

Persons with HS tended to also have LATE-NC and the 
reverse was also true among individuals in both datasets 
(Jaccard coefficients of 0.589 and 0.575 in NACC and 
ROSMAP, respectively); see Fig. 3. Of the 732 ROSMAP 
participants with available case data for both LATE-NC 
and HS, 93% of HS cases were also LATE-NC cases. Of 
the 410 NACC participants with available case data 
for both LATE-NC and HS, 73% of HS cases were also 
LATE-NC cases.

Across the KCNMB2, TMEM106B, ABCC9, GRN, 
and APOE genes, each flanked by 10 kb, a total of 1,580 
SNVs passed QC in NACC while 1,532 SNVs passed QC 
in ROSMAP. A total of 1,438 SNVs were shared between 
NACC and ROSMAP and were included in the meta-
analysis (Additional File 1: Supplemental Table 2).

Gene‑based associations
The adjusted meta-analyzed, SNV-level results were 
combined within genes via ACAT to obtain gene-based 
p-values. At the gene level, TMEM106B and APOE were 
significantly associated with both HS and LATE-NC 
while ABCC9 and GRN were significantly associated with 
HS only (Table  2). Neither HS nor LATE-NC were sig-
nificantly associated with KCNMB2. The meta-analyzed 
gene-based results were largely similar to when they were 
conducted separately in the NACC and ROSMAP data-
sets. Additionally, these results were largely unchanged 
when 0 kb and 25 kb of flanking were added to each gene.

Aggregated Cauchy association test (ACAT) gene-
based p-values for hippocampal sclerosis (HS) and lim-
bic-predominant age-related TDP-43 encephalopathy 
neuropathological changes (LATE-NC). Each gene is 
flanked by 10  kb. All SNV-level analyses were adjusted 
for sex, age at death, cohort/study, and the first three 
genetic principal components and meta-analyzed across 
National Alzheimer’s Coordinating Center (NACC) and 
Religious Orders Study and Rush Memory and Aging 
Project (ROSMAP) participants. Chr. = chromosome; 
HS = hippocampal sclerosis; LATE-NC = limbic-pre-
dominant age-related TDP-43 encephalopathy neuro-
pathological changes; MOI = mode of inheritance.

Prioritized SNVs and follow‑up analyses
The effective number of independent tests for 
TMEM106B ± 10 kb was estimated to be 25, GRN ± 10 kb 
was estimated to be 16, KCNMB2 ± 10 kb was estimated 
to be 104, APOE ± 10  kb was estimated to be 14, and 
ABCC9 ± 10 kb was estimated to be 71. The Bonferroni-
corrected thresholds for a genetic region was calculated 
by dividing 0.05 by the corresponding estimated effective 
number of independent tests in the region.

Fig. 1 Photomicrographs of human hippocampi depict the 
main neuropathologic endophenotypes analyzed in the current 
study. Hippocampal sclerosis (HS) is evaluated with H&E stain 
(panels A, C, E), whereas LATE-NC is operationalized with 
phospho-TDP-43 immunohistochemistry (IHC; panels B, D, and F). All 
photomicrographs depict mid-level hippocampal sections dissected 
in the coronal plane. Panels A and B show stained brain sections 
from a woman (APOE e3/e4) who died at age 83; autopsy revealed 
neither LATE-NC nor HS. Panels C and D are from a man (APOE e3/
e4) who died at age 93 with LATE-NC Stage 2. Panels E and F are from 
a woman (APOE e3/e3) who died at age 95 with LATE-NC Stage 2 
and comorbid HS. Note the relatively atrophic hippocampal profile 
in Panel E in comparison to a or c (same scale bar); the HS + profile 
in panel E also demonstrates parenchymal rarefaction which 
can be appreciated even at low magnification. Phospho-TDP-43 
immunoreactive intraneuronal inclusions are highlighted with arrows 
in panels D and F. The representative photomicrographs were from 
research participants of the University of Kentucky AD Research 
Center. Scale bar = 2 mm in A, C, and E, 75 microns in A, D, and F 
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Fig. 2 Included and excluded research participants, along with criteria for exclusion. A flowchart summarizing inclusions and exclusions for 
National Alzheimer’s Coordinating Center (NACC) and Religious Orders Study and Rush Memory and Aging Project (ROSMAP) participants

Table 1 Participant characteristics stratified by endophenotype status

Participant characteristics stratified by hippocampal sclerosis (HS) and limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) 
case status. NACC = National Alzheimer’s Coordinating Center; ROSMAP = Religious Orders Study and Rush Memory and Aging Project; SD = standard deviation; 
HS = hippocampal sclerosis; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropathological changes

NACC ROSMAP

Number of 
Participants (%)

Age at Death, 
Mean (SD)

Female, N (%) Number of 
Participants (%)

Age at Death, 
Mean (SD)

Female, N (%)

HS

 Overall N = 631 85.9 (8.3) 319 (50.6) N = 780 88.7 (7.2) 525 (67.3)

 No 542 (85.9) 85.9 (8.4) 270 (49.8) 707 (90.6) 88.3 (7.2) 468 (66.2)

 Yes 89 (14.1) 86.0 (7.5) 49 (55.1) 73 (9.4) 92.0 (6.4) 57 (78.1)

LATE-NC

 Overall N = 512 85.1 (7.9) 207 (50.2) N = 747 89.1 (7.1) 506 (67.7)

 No 291 (70.6) 84.9 (8.1) 138 (47.4) 499 (66.8) 87.9 (7.3) 315 (63.1)

 Yes 121 (29.4) 85.4 (7.3) 66 (57.0) 248 (33.2) 91.5 (6.1) 191 (77.0)
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One hundred and ten SNVs in the TMEM106B ± 10 kb 
locus had adjusted meta-analytic associations with HS or 
LATE-NC less than the Bonferroni-corrected threshold 
(Fig.  4a). At the TMEM106B ± 10  kb locus, rs7781670 
had the smallest adjusted meta-analytic p-value for 
LATE-NC assuming an additive MOI (p = 2.97 ×  10–5). 
rs7781670 also met the Bonferroni-corrected thresh-
old for the TMEM106B ± 10  kb locus for HS when 
assuming a recessive MOI (p = 1.63 ×  10–3) and was a 
significant eQTL in GTEx for TMEM106B in the cer-
ebellum (p = 4.7 ×  10–7) and the cortex (p = 2.6 ×  10–5). 
In INFERNO, these prioritized SNVs were associated 
with both eQTLs and Roadmap enhancers in blood, 

connective, and epithelial tissues and just Roadmap 
enhancers in brain, heart, immune organ, liver, and skel-
etal tissues, among others.

Fourteen SNVs in the GRN ± 10 kb locus had adjusted 
meta-analytic associations with HS or LATE-NC less 
than the Bonferroni-corrected threshold (Fig. 4b). rs5848 
had the smallest adjusted meta-analytic p-value in the 
GRN ± 10  kb locus and met the Bonferroni-corrected 
threshold for HS (additive MOI p = 2.16 ×  10–4; reces-
sive MOI p = 1.91 ×  10–4). rs5848 also had the small-
est adjusted meta-analytic p-value for LATE-NC in the 
GRN ± 10 kb locus, but it did not meet the Bonferroni-
corrected threshold. In GTEx, rs5848 was a significant 
eQTL for GRN expression in numerous tissues including 
thyroid (p = 2.2 ×  10–16), caudate (p = 2.0 ×  10–12), cor-
tex (p = 2.0 ×  10–9), and frontal cortex (p = 4.4 ×  10–9). In 
INFERNO, these prioritized SNVs were associated with 
both eQTLs and Roadmap enhancers in adipose, con-
nective, endocrine, heart, and nervous tissues, with just 
eQTLs in blood vessel tissue, and with just Roadmap 
enhancers in brain, blood, immune organ, liver, and skel-
etal muscle tissues, among others.

No SNVs in the KCNMB2 ± 10  kb locus had adjusted 
meta-analytic associations with HS or LATE-NC that 
met the Bonferroni-corrected threshold (Additional File 
1: Supplemental Fig. 1).

The APOE ± 10  kb locus was strongly associated with 
LATE-NC. Four SNVs (rs429358, rs769449, rs10414043, 
and rs7256200), all in high linkage disequilibrium with 
one another (all  r2 > 0.95), had adjusted meta-analytic 
associations with LATE-NC that met the Bonferroni-
corrected threshold assuming an additive MOI (all 
p-values ≤ 2.56 ×  10–8) (Fig. 5). While none of the APOE 
SNVs were associated with APOE expression levels in 
the evaluated data sets, rs769449 and rs10414043 were 
significant sQTLs in GTEx for TOMM40 in cerebellar 

Fig. 3 Venn diagrams of the overlap between endophenotypes 
across studies. Venn diagrams of the overlap between 
limbic-predominant age-related TDP-43 encephalopathy 
neuropathological change (LATE-NC) and hippocampal sclerosis 
(HS) cases in A. National Alzheimer’s Coordinating Center (NACC) 
and B. Religious Orders Study and Rush Memory and Aging Project 
(ROSMAP). LATE-NC = limbic-predominant age-related TDP-43 
encephalopathy neuropathological change; HS = hippocampal 
sclerosis; NACC = National Alzheimer’s Coordinating Center; 
ROSMAP = Religious Orders Study and Rush Memory and Aging 
Project

Table 2 Gene-based results for risk genes

Chr Gene Endophenotype MOI

Additive Dominant Recessive

3 KCNMB2 HS 0.718 0.632 0.478

LATE-NC 0.980 0.995 0.473

7 TMEM106B HS 0.006 0.052 0.005
LATE-NC  < 0.001 0.004  < 0.001

12 ABCC9 HS 0.036 0.072 0.006
LATE-NC 0.901 0.440 0.912

17 GRN HS 0.004 0.348 0.003
LATE-NC 0.164 0.628 0.069

19 APOE HS 0.014 0.017 0.333

LATE-NC  < 0.001  < 0.001 0.064
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hemisphere tissue (p = 4.0 ×  10–10 and p = 1.4 ×  10–5, 
respectively). In INFERNO, these prioritized SNVs were 
associated with both Roadmap and FANTOM5 enhanc-
ers in adipose, blood, brain, connective, epithelial, liver, 
nervous, skeletal muscle, smooth muscle, and stem cell 
tissues and with just Roadmap enhancers in endocrine, 
heart, and immune organ tissues, among others.

The ABCC9 ± 10  kb locus was most strongly associ-
ated with HS and contained 13 SNVs with adjusted 
meta-analytic p-values for HS less than the Bonferroni-
corrected threshold (Fig.  6). rs1914361 had the small-
est adjusted meta-analytic p-value with HS assuming 
a recessive MOI (p = 1.70 ×  10–4). In prior studies 
with cohorts of research subjects that did not over-
lap with the current study, the ABCC9/HS association 

was strongest for the recessive MOI models [29, 43, 
48]. All other SNVs that also met the Bonferroni-
corrected threshold when assuming a recessive MOI 
were in high linkage disequilibrium with rs1914361 
(all  r2 > 0.75). rs1914361 was a significant eQTL in the 
GTEx data set for the expression of ABCC9 in several 
tissues, including brain (nucleus accumbens, caudate, 
cortex, and putamen) and artery tissues (tibial and 
aorta) (Fig.  7a). Notably, rs1914361 minor alleles were 
positively correlated with ABCC9 expression in brain 
tissues (Fig. 7b) and negatively correlated with ABCC9 
expression in artery tissues (Fig.  7c). Furthermore, 
relative to rs704178, a previously identified ABCC9 
HS SNV, rs1914361 had a similarly strong associa-
tion with ABCC9 gene expression in GTEx (rs704178: 

Fig. 4 Variant-level results for TMEM106B and GRN. Adjusted, meta-analytic, single nucleotide variant (SNV)-level p-values for hippocampal sclerosis 
(HS) and limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) across A. TMEM106B ± 10 kb and B. 
GRN ± 10 kb. All analyses were adjusted for sex, age at death, cohort/study, and the first three genetic principal components. Horizontal dashed 
lines represent the Bonferroni-corrected thresholds for significance that account for the number of independent tests in each genomic region. A 
diamond represents the SNV with the smallest p-value. The previously identified TMEM106B SNV (Rutherford et al. [62]) is labeled and identified 
with an arrow. MOI = mode of inheritance; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropathological change; 
HS = hippocampal sclerosis
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p = 4.00 ×  10–13; rs1914361: p = 7.10 ×  10–12) and a 
stronger association with ABCC9 gene expression in 
BRAINEAC (rs704178: p = 6.80 ×  10–4; rs1914361: 
p = 2.10 ×  10–7) (Table  3). In INFERNO, these prior-
itized SNVs were associated with Roadmap enhancers 
in adipose, blood vessel, connective, heart, live, skeletal 
muscle, and smooth muscle tissues, among others.

SNV‑level regression analyses
In their respective regression models, the GRN SNV 
rs5848 (p = 0.010), the APOE SNV rs769449 (p < 0.001), 
and APOE ε4 carrier status (p < 0.001) all had nominally 
significant adjusted meta-analytic associations with 
LATE-NC and the TMEM106B SNV rs7781670 had a 
borderline-significant adjusted meta-analytic association 

Fig. 5 Variant-level results for APOE. Adjusted, meta-analytic, single nucleotide variant (SNV)-level p-values for hippocampal sclerosis (HS) and 
limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) across APOE ± 10 kb. All analyses were adjusted for 
sex, age at death, cohort/study, and the first three genetic principal components. The horizontal dashed line represents the Bonferroni-corrected 
threshold for significance that accounts for the number of independent tests in the APOE ± 10 kb region. A diamond represents the SNV with the 
smallest p-value. MOI = mode of inheritance; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropathological change; 
HS = hippocampal sclerosis

Fig. 6 Variant-level results for ABCC9. Adjusted, meta-analytic, single nucleotide variant (SNV)-level p-values for hippocampal sclerosis (HS) and 
limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) across ABCC9 ± 10 kb assuming a recessive mode of 
inheritance (MOI). A recessive MOI was assumed for ABCC9 since it has consistently been the MOI with the strongest HS association for ABCC9 [43, 
48, 29]. All analyses were for sex, age at death, cohort/study, and the first three genetic principal components. The horizontal dashed line represents 
the Bonferroni-corrected threshold for significance that accounts for the number of independent tests in the ABCC9 ± 10 kb region. A diamond 
represents the SNV with the smallest p-value. The previously identified ABCC9 SNV [43] is labeled and identified with an arrow. MOI = mode of 
inheritance; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropathological change; HS = hippocampal sclerosis
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with LATE-NC (p = 0.057) (Table 4). All odds ratio esti-
mates were consistent across NACC and ROSMAP 
with the exception of the ABCC9 SNV rs1914361 when 

assuming a recessive MOI (NACC: OR = 0.98; ROSMAP: 
OR = 1.40). Notably, the odds ratio estimates for LATE-
NC were very similar between the APOE SNV rs769449 
(meta-analytic OR = 1.95) and APOE ε4 carrier status 
(meta-analytic OR = 2.05), which likely reflects the fact 
that rs769449 minor allele counts are strongly correlated 
with APOE ε4 counts (NACC:  r2 = 0.746; ROSMAP: 
 r2 = 0.712). In a sensitivity analysis with smaller sample 
sizes, the TMEM106B SNV rs1990622, but none of the 
other tested SNVs, had nominally significant adjusted 
associations with TDP-43 in the amygdala (LATE-NC 
Stage 1 vs. LATE-NC Stage 0); see Additional File 1: Sup-
plemental Table 6.

Fig. 7 Expression quantitative trait loci (eQTL) analyses for rs1914361 and ABCC9 across tissue types. Expression quantitative trait loci (eQTL) 
analyses for rs1914361 and ABCC9 gene expression across human tissues in the Genotype-Tissue Expression (GTEx) database. a Multi-tissue 
eQTL plot of rs1914361 and ABCC9 gene expression; b ABCC9 normalized gene expression stratified by rs1914361 minor alleles in the nucleus 
acumbens region of the brain; and c ABCC9 normalized gene expression stratified by rs1914361 minor alleles in the aorta region of the artery. 
GTEx = Genotype-Tissue Expression; NES = normalize effect size; eQTL = expression quantitative trait loci

Table 3 Most significant expression quantitative trait loci (eQTL) 
p-values for ABCC9 in BRAINEAC and GTEx databases

eQTL = expression quantitative trait loci; GTEx = Genotype-Tissue Expression; 
SNV = single-nucleotide variant

Gene SNV Most Significant eQTL P‑value

BRAINEAC GTEx

ABCC9 rs704178 6.80E-04 4.00E-13

rs1914361 2.10E-07 7.10E-12
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No LATE-NC-by-SNV interactions were significant 
in the adjusted HS models, so the interaction terms 
were removed. The TMEM106B SNVs (rs1990622 and 
rs7781670), the GRN SNV (rs5848), one of the ABCC9 

SNVs (rs1914361), the APOE SNV (rs769449), and APOE 
ε4 carrier status all had nominally significant, adjusted 
meta-analytic associations with HS (Table  5). When 
these models were adjusted for LATE-NC, all models had 

Table 4 Adjusted limbic predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) odds ratios for risk 
variants

Adjusted effects of single nucleotide variants (SNV) on limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC). All models 
adjust for sex, age at death, first three principal components and cohort/study. For rs1990622, rs7781670, and rs704178, the effect alleles are the risk-associated alleles 
and not the minor alleles. NACC = National Alzheimer’s Coordinating Center; ROSMAP = Religious Orders Study and Rush Memory and Aging Project; MOI = mode of 
inheritance; SNV = single-nucleotide variant; OR = odds ratio; CI = confidence interval.

Gene MOI SNV Effect Allele NACC ROSMAP Meta‑Analysis

OR P‑value OR P‑value OR 95% CI P‑value

TMEM106B Additive rs1990622 A 1.39 0.051 1.08 0.484 1.16 (0.97, 1.39) 0.099

TMEM106B Additive rs7781670 C 1.47 0.024 1.09 0.415 1.19 (1.00, 1.43) 0.057

GRN Additive rs5848 T 1.40 0.042 1.23 0.089 1.29 (1.06, 1.56) 0.010
ABCC9 Additive rs1914361 G 1.16 0.354 1.16 0.171 1.16 (0.97, 1.39) 0.098

ABCC9 Recessive rs1914361 G 0.98 0.933 1.40 0.077 1.25 (0.92, 1.71) 0.151

ABCC9 Additive rs704178 G 0.95 0.764 1.07 0.536 1.03 (0.86, 1.24) 0.732

ABCC9 Recessive rs704178 G 0.80 0.433 1.16 0.394 1.05 (0.78, 1.40) 0.759

APOE Additive rs769449 A 1.70 0.004 2.22  < 0.001 1.95 (1.51, 2.52)  < 0.001
APOE N/A e4 Carrier N/A 1.88 0.010 2.16  < 0.001 2.05 (1.54, 2.74)  < 0.001

Table 5 Hippocampal sclerosis (HS) odds ratios for risk variants with and without adjustment for LATE-NC status

Adjusted effects of single nucleotide variants (SNV) on hippocampal sclerosis (HS). A separate regression model was fit for each variant, mode of inheritance (MOI), 
and limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) adjustment. All models also adjust for sex, age at death, first 
three principal components and cohort/study. For rs1990622, rs7781670, and rs704178, the effect alleles are the risk-associated alleles and not the minor alleles. 
NACC = National Alzheimer’s Coordinating Center; ROSMAP = Religious Orders Study and Rush Memory and Aging Project; MOI = mode of inheritance; SNV = single-
nucleotide variant; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropathological change; OR = odds ratio; CI = confidence interval.

Gene MOI SNV Effect Allele LATE‑NC 
Adjusted

NACC ROSMAP Meta‑Analysis

OR P‑value OR P‑value OR 95% CI P‑value

TMEM106B Additive rs1990622 A Yes 1.23 0.396 1.61 0.017 1.44 (1.07, 1.95) 0.017
No 1.43 0.044 1.55 0.019 1.49 (1.15, 1.91) 0.002

TMEM106B Additive rs7781670 C Yes 1.20 0.456 1.53 0.029 1.39 (1.03, 1.88) 0.030
No 1.47 0.034 1.50 0.028 1.48 (1.15, 1.91) 0.002

GRN Additive rs5848 T Yes 1.37 0.168 1.37 0.123 1.37 (1.02, 1.84) 0.039
No 1.67 0.004 1.43 0.057 1.56 (1.21, 2.00)  < 0.001

ABCC9 Additive rs1914361 G Yes 1.92 0.005 1.31 0.152 1.52 (1.14, 2.03) 0.004
No 1.64 0.004 1.35 0.092 1.49 (1.17, 1.90) 0.001

ABCC9 Recessive rs1914361 G Yes 3.87  < 0.001 1.58 0.124 2.23 (1.42, 3.51)  < 0.001
No 2.69  < 0.001 1.64 0.075 2.12 (1.45, 3.09)  < 0.001

ABCC9 Additive rs704178 G Yes 1.51 0.079 1.52 0.034 1.52 (1.13, 2.04) 0.006
No 1.09 0.618 1.42 0.059 1.23 (0.96, 1.57) 0.099

ABCC9 Recessive rs704178 G Yes 1.77 0.121 1.48 0.171 1.58 (1.02, 2.47) 0.042
No 1.33 0.292 1.43 0.180 1.38 (0.95, 2.01) 0.090

APOE Additive rs769449 A Yes 1.15 0.589 1.54 0.094 1.33 (0.93, 1.90) 0.118

No 1.30 0.188 2.02 0.004 1.54 (1.14, 2.09) 0.005
APOE N/A e4 Carrier N/A Yes 1.74 0.114 1.34 0.318 1.49 (0.96, 2.31) 0.075

No 1.79 0.024 1.91 0.018 1.84 (1.28, 2.66) 0.001
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nominally significant adjusted meta-analytic associations 
with HS with the exception of the APOE SNV (rs769449) 
and APOE ε4 carrier status (Table  5, Fig.  8), suggest-
ing that the association between APOE status and HS is 
related to a more direct interaction between APOE and 
LATE-NC (i.e., TDP-43 proteinopathy). By contrast, the 
association between HS and the ABCC9 SNV rs704178 
becomes nominally significant with larger odds ratio esti-
mates when adjusted for LATE-NC.

An issue raised by the ABCC9/HS association results 
was whether this correlation was driven by cases lacking 
LATE-NC, i.e. the minority of cases with HS pathology 
that lacked TDP-43 proteinopathy. A separate sensitiv-
ity analysis was performed that excluded the cases with 
HS pathology that lacked LATE-NC. Results are shown 
in Additional File 1: Supplemental Table  3, which may 
be compared with Table 5. The odds ratio estimates for 
the association between ABCC9 risk variants and HS 
pathology was essentially unchanged by removing the 
LATE-NC-HS + cases.

Additional sensitivity analyses were performed test-
ing if the top LATE/HS-related SNVs were associated 
with ADNC, i.e. Braak NFT stages or CERAD neuritic 
plaque densities. In these analyses, only the APOE SNV 
(rs769449) and APOE ε4 carrier status were found to 
be associated with ADNC (Additional File 1: Supple-
mental Tables  7 and 8). These results suggest that the 

associations between HS and LATE-NC and the non-
APOE SNVs were likely independent of ADNC.

Discussion
Using large genetic data sets with complementary 
autopsy-derived data, we demonstrated that the neu-
ropathological endophenotypes of LATE-NC and HS 
showed replication for associations with a number of 
previously identified risk genes. The strong association 
between TMEM106B and TDP-43 proteinopathy—
including LATE-NC Stage 1—was once again replicated. 
Interestingly, ABCC9 was not associated with LATE-NC 
but was associated with HS pathology. Our study adds to 
the growing body of literature on the overlapping genet-
ics of HS and LATE-NC while also highlighting several 
genetic loci unique to each disease entity.

We replicated significant gene-based associations 
between HS and the TMEM106B, ABCC9, GRN, and 
APOE genes along with the rs7781670 (TMEM106B) 
and rs5848 (GRN) SNVs. Furthermore, we identified 
novel SNV-level associations between LATE-NC and 
rs7781670 and rs769449. The association of LATE-NC 
and rs7781670 is intriguing since it was also recently 
associated with clinical AD in a large AD GWAS [9]. 
We found no evidence to support the hypothesis that 
KCNMB2 is a risk gene for either LATE-NC or HS 
pathologies. However, we note that the sample size of the 

Fig. 8 Adjusted odds ratios for hippocampal sclerosis (HS) across variants. Adjusted odds ratio estimates and 95% confidence intervals for genetic 
single nucleotide variants (SNV) and APOE ε4 carrier status from separate regression models of hippocampal sclerosis (HS) fit using data from the 
National Alzheimer’s Coordinating Center (NACC), the Religious Orders Study and Rush Memory and Aging Project (ROSMAP), and the meta-analysis 
of NACC and ROSMAP. All regression models were adjusted for sex, age at death, cohort/study, and the first three genetic principal components. 
Regression models were also adjusted for limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) case status 
by the including LATE-NC status as an additional predictor variable and these odds ratio estimates are represented by triangles. For each variant, 
the effect allele is defined as the HS risk-causing allele (HA odds ratio estimates > 1.0), and not necessarily the minor allele. An additive mode of 
inheritance (MOI) is assumed for all variants except for rs704178 where a dominant MOI was assumed (since a recessive MOI resulted in a significant 
protective effect for HS). HS = hippocampal sclerosis; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropathological 
change; NACC = National Alzheimer’s Coordinating Center; ROSMAP = Religious Orders Study and Rush Memory and Aging Project
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present study was suitable to detect only relatively large 
genotype/phenotype associations.

There is an emerging consensus that mixed patholo-
gies are highly prevalent in elderly populations, and 
there are complex relationships between genotypes and 
the downstream pathologies. The finding that variants 
in GRN, TMEM106B, and APOE genes are associated 
with several neuropathological endophenotypes fits in 
with recent studies looking at genetic pleiotropy in neu-
rological conditions [12]. Pleiotropic effects have been 
observed among AD-related neuropathological changes 

Fig. 9 ABCC8 and ABCC9 gene expression across tissue types. 
ABCC8 and ABCC9 gene expression in various human tissues in the a 
Genotype-Tissue Expression (GTEx) and b Functional Annotation of 
Human Long Noncoding RNAs via Molecular Mapping (FANTOM5) 
databases. In GTEx, central nervous system (CNS) tissues included 
Brodmann (1909) area 24, Brodmann (1909) area 9, C1 segment 
of cervical spinal cord, amygdala, caudate nucleus, cerebellar 
hemisphere, cerebellum, cerebral cortex, hippocampus proper, 
hypothalamus, nucleus accumbens, pituitary gland, and substantia 
nigra; vascular/smooth muscle tissues included aorta, atrium 
auricular region, coronary artery, tibial artery, endocervix, esophagus 
muscularis mucosa, urinary bladder, and uterus; and other tissues 
included all other tissue types. In FANTOM5, CNS tissues included 
amygdala, brain, caudate nucleus, cerebellum, diencephalon, 
dorsal thalamus, globus pallidus, hippocampal formation, locus 
ceruleus, medulla oblongata, middle frontal gyrus, middle temporal 
gyrus, occipital cortex, occipital lobe, olfactory apparatus, parietal 
lobe, pituitary gland, putamen, spinal cord, and substantia nigra; 
vascular/smooth muscle tissue included artery, heart, heart left 
ventricle, left cardiac atrium, mitral valve, smooth muscle, tricuspid 
valve, and uterus; and other tissues included all other tissue types. 
GTEx = Genotype-Tissue Expression; FANTOM5 = Functional 
Annotation of Human Long Noncoding RNAs via Molecular Mapping; 
TPM = transcripts per million; CNS = central nervous system

like neuritic plaques, neurofibrillary tangles, and cerebral 
amyloid angiopathy [13] as well as between LATE-NC 
and FTLD-TDP [42].

Since the large majority of HS cases were also LATE-
NC cases in the current study (Fig. 3), it was striking that 
some risk genes and SNVs were found to only be associ-
ated with HS and not LATE-NC—and vice versa, when 
statistical models were applied. We did identify several 
genes that are associated with both neuropathologic 
endophenotypes. Specifically, the TMEM106B, GRN, and 
APOE SNVs appear to predispose individuals to LATE-
NC (Fig.  10a). Our data indicate that the associations 
between HS and SNVs in the TMEM106B, GRN, and 
ABCC9 genes remain statistically significant in a model 
that adjusts for the presence of LATE-NC (Table  5). 
However, the impact of TMEM106B and GRN on HS 
appeared to be attenuated in a statistical model that 
included TDP-43 proteinopathy, suggesting that their 
impact on HS may be mediated by their role in LATE-
NC. How these genetic SNVs can impact HS secondarily 
or independently of LATE-NC is not currently known.

While several ABCC9 SNVs have been found to be 
associated with HS, including rs704178 and rs704180, 
this is the first study to report an association between 
the ABCC9 SNV rs1914361 and HS. Notably, rs1914361 
was found to be associated with HS in two of the three 
included cohorts of the original HS GWAS [43], but it 
was not included in the downstream analyses since its 
association with HS wasn’t nominally significant in all 
three cohorts (data not published). It is important to note 

◂
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that prior studies involved completely different sets of 
included participants (no overlap, as verified with com-
putational methods) but the “direction” of the effect in all 
cohorts studied was the same. Since rs1914361 was found 
to also be significantly associated with the expression of 
ABCC9 (Table 3) and is not in strong linkage disequilib-
rium with rs704178  (r2 = 0.176), the two loci may repre-
sent independent ABCC9 HS risk SNVs.

We also identified divergent patterns in the tissue-level 
gene expressions of ABCC9 and its homologous gene, 
ABCC8 (Fig.  9). The proteins encoded by both of these 
genes function to help regulate the “KATP” potassium 
channels, which serve as molecular sensors helping to 
match metabolic needs with cellular reactivity [45, 51]. 

Multiple lines of evidence link ABCC9 with blood ves-
sels in normal and disease states. In the present study, 
ABCC9 appeared to be relatively highly expressed in 
vascular and smooth muscle tissues (Fig.  9), and the 
correlative impact of the ABCC9/HS risk allele differed 
in blood vessels in comparison to brain tissue (Fig.  7). 
Further, the risk-related allele was associated with lower 
expression of ABCC9 in blood vessels (Fig.  7). ABCC9 
has previously been shown to be a marker of vascular 
mural cells (e.g., pericytes and smooth muscle cells)[2, 
5, 10, 30, 64] and the protein product has been impli-
cated in modulating blood flow [45, 51, 61]. In terms of 
highly penetrant genetic variants, ABCC9 toxic gain-
of-function mutations are linked to Cantu Syndrome, a 
complex phenotype that includes tortuous cerebral blood 
vessel patterns [31, 32]. ABCC9 loss-of-function muta-
tions cause ABCC9-related Intellectual disability Myopa-
thy Syndrome (AIMS), another complex condition that 
includes intellectual disability with white matter hyperin-
tensities detected by MRI, even in teenagers [63]. Thus, 
ABCC9 dysregulation may partly underlie the observa-
tion (i.e., may help to explain the phenomenon) that 
arteriolosclerosis is more severe in brains with LATE/HS 
than non-LATE/HS brains [1, 22, 24, 28, 49].

The current study adds to a growing body of literature 
suggesting that LATE-NC is a potential precursor to HS 
[42]. It is yet to be seen how exactly the APOE gene and 
AD-type changes interact with other pathologies, but one 
hypothesis is that APOE and AD predispose an individual 
to LATE-NC, which then drives an individual towards 
severe LATE-NC and HS (Fig. 10). It has been found that 
TDP-43 proteinopathy localizes to tangle-like structures 
in many cases with ADNC [26]. Further autopsy-based 
studies with larger sample sizes are needed.

There are both limitations and strengths to the pre-
sent study. Because of the characteristics of the sample 
(largely Caucasian, drawn from a number of differ-
ent research centers), the degree to which findings are 
generalizable is unknown, especially with respect to 
individuals of other ancestries. While this work aims 
to replicate previous associations, there are many mod-
els considered which can inflate false positive rates. 
Additionally, it can be difficult to show that the asso-
ciations identified in the current study are independ-
ent of ADNC, but several sensitivity analyses provide 
evidence that at least the non-APOE associations are 
likely independent of ADNC. Further follow-up stud-
ies are needed to investigate the significant associa-
tions between APOE and LATE-NC, though even if 
null this association would still highlight the strong 
associations that exist between AD and other neuro-
degenerative diseases, which is interesting in itself. We 
also note that all the included subjects had high-quality 

Fig. 10 Diagrams depicting potential causal relationships between 
the genes under study with positive findings. Diagrams depicting 
potential causal relationships between the genes under study 
with positive findings (TMEM106B, ABCC9, GRN, and APOE) and 
TDP-43 proteinopathy/limbic-predominant age-related TDP-43 
encephalopathy (LATE), hippocampal sclerosis (HS), and Alzheimer’s 
disease (AD). a The candidate genes and their corresponding colors 
in the diagrams, b a diagram of the current study’s prima facie results, 
and c a diagram showing hypothetical mechanistic pathways that 
are compatible with the findings of the current study, including how 
AD neuropathologic changes (often linked to the APOE risk allele) 
may fit in with the current study’s results. LATE = limbic-predominant 
age-related TDP-43 encephalopathy; HS = hippocampal sclerosis; 
AD = Alzheimer’s disease
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neuropathologic workup for TDP-43 proteinopathy and 
HS, and all the ADGC subjects were autopsied during 
2014 and later. These study design elements constitute 
strengths of the current study.
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