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Environmental Health Research in Bangladesh
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* Epidemiologic evidence sparse

* In low-dose range

e Characterizing exposure from sources other than water



Global Distribution of Arsenic in Drinking Water
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Smedley & Kinniburgh (2002) Applied Geochemistry 17:517-68.



Arsenic Exposure in Bangladesh

Magnitude of affected population most severe in Bangladesh

Hand-pumped tubewells installed to provide pathogen-free
groundwater beginning in 1970s

Groundwater in Bangladesh naturally contaminated with high
levels of arsenic

Arsenic in groundwater discovered only after decades of
exposure and an epidemic of skin lesions, a hallmark
characteristic of arsenic toxicity




Magnitude of Public Health Issue in Bangladesh

 British Geological Survey study of wells in
Bangladesh

e 27% of well samples >50 ug/L -
28-35 million individuals

* 46% of well samples >10 pg/L -
46-57 million individuals
(est. 2000)




Geographic Well Arsenic Distribution in Araihazar
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Exposure Mitigation Campaigns

All wells in study area tested and labeled \'sﬁenbai's‘mi_ﬁ;.\!
) ) ) ) L 1D 4368 Y, e
with their arsenic concentration ’ Wil

.’

Community educational programs to
promote well switching

Installation of deep community wells

Distribution of SONO filters




Well Switching
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Health Effects of Chronic Arsenic Exposure

Skin lesions
Non-melanoma skin cancers
Internal cancers:

Bladder

Kidney

Lung

Liver

Prostate

Developmental effects

Neurological effects
Hypertension
Cardiovascular disease
Pulmonary disease
Peripheral vascular disease
Mortality

Reproductive effects

Diabetes



Arsenic Exposure and Mortality

All-cause mortality* Chronic-disease mortality*
Deaths HR(95% Cl) Deaths HR(95%Cl) .
Arsenic (pg/L) in wellwater * A"'Cause mortallty
0-1-10-0 74 1-00 58 1-00
101500 90  134(099-182) 69  133(0.94-187) e 21% could be attributed to arsenic
50-1-1500 98 1:09 (0-81-1-47) 83 122 (0-87-170)
150.1_86440 131 1.68(1.26_2.23) 101 1.68(1.21_2.33) eXpOSU re from drinklng Water at
Arsenic dose (g per day) concentrations >10 pg/L
0-041-35.0 87 1-00 66 1-00
35-1-163-0 97 110 (0-83-1:47) 80 1.21(0-88-1-67)
1631-4010 91  109(081-146) 76  122(088-171) * Chronic disease mortality
4011-4898.0 118 154 (117-2-04) 89 1.58 (1-15-2-18)
Totalarsenic in vrine (pg/q)
70-1050 83 100 64 100 * 24% could be attributed to arsenic
1051-1990 96 107(080-143) 80  117(084-162) exposure from drinking water at
199.1-352-0 100 122 (0-91—1'63) 83 137 (0-98-1-90) .
3521-5000-0 105  145(109-194) 77  147(105-2:06) concentrations >10 Hg/l—

Data are number or HR (95% Cl). *Multivariate estimates were adjusted for age,
sex, body-massindex, systolic blood pressure, education, and smoking status.

Table 2: Hazard ratio (HR) for mortality in participants in relation to
baseline arsenic exposure

Argos et al. (2010) Lancet 376(9737):252-8




Arsenic Exposure and Pregnancy Outcomes

Crude and adjusted odds ratios (95% ClIs) for the associations between prenatal arsenic
exposure and adverse pregnancy outcomes.

Model Urinary total arsenic (pg/g creatinine)
17 - 555 556 - 3712 P-value
Any adverse pregnancy outcome
Unadjusted 1 (ref) 1.53 (1.00, 2.35) 0.05
Adjusted for maternal age 1 (ref) 1.58 (1.02, 2.42) 0.04
Fully adjusted” 1 (ref) 1.59 (1.02, 2.46) 0.04
Stillbirth/spontaneous abortion
Unadjusted 1 (ref) 1.50 (0.92, 2.45) 0.10
Adjusted for maternal age 1 (ref) 1.51 (0.93, 2.47) 0.10
Fully adjusted” 1 (ref) 1.57 (0.96, 2.56) 0.07
Stillbirth
Unadjusted 1 (ref) 2.41 (1.00, 5.85) 0.05
Adjusted for maternal age 1 (ref) 2.41 (0.99, 5.85) 0.05
Fully adjusted” 1 (ref) 2.50 (1.04, 6.01) 0.05
Spontaneous abortion
Unadjusted 1 (ref) 1.26 (0.72, 2.20) 0.41
Adjusted for maternal age 1 (ref) 1.27 (0.72, 2.24) 0.42
Fully adjusted” 1 (ref) 1.33 (0.76, 2.32) 0.32
Therapeutic/elective abortion
Unadjusted 1 (ref) 1.67 (0.75, 3.73) 0.21
Adjusted for maternal age 1 (ref) 1.69 (0.75, 3.81) 0.21
Fully adjusted” 1 (ref) 1.58 (0.70, 3.56) 0.27

# Adjusted for matemnal age (years), matemal education (years), BEST treatment as-
signment, and skin lesion severity.
b Adjusted for maternal age (years), maternal education (years), BEST treatment as-
signment, skin lesion severity, parity, and previous stillbirth. Shih et al. Environmental Research 2017. 158 :456-461



Developmental Origins of Health and Disease

(DOHaD)

* Arsenic implicated in development of variety of diseases in adults

* Critical developmental period, beginning in utero and continuing into early
postnatal life, uniquely sensitive to environmental insults

* Early-life exposure might permanently change the body’s structure, metabolism,
and physiology, and hence promote health or diseases in later stages of life



Early-life Arsenic Exposure and Cancer
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Kidney Cancer Mortality

TABLE 3. Standardized Mortality Ratios® for Kidney Cancer
Mortality Among Young Adults in Antofagasta and
Mejillones® Aged 30-39 Years Who Were Born During and
Just Before the High-Exposure Period, and for Ages 40 and
Above Who Were Born Before 1950 and Would Not Have

Had Early Life Exposure e Association of in utero and early
Age Birth No. Observed No. Expected SMR childhood arsenic EXposure with kldney
(Years) Cohort Deaths Deaths (95% CI) cancer mortality
Men

30-39 1950-1970 4 0.71 5.63 (1.52-14.4) . .

10+ Befoee 1050 103 38 2,68 (2.19-3.26) e 1950-1970 birth cohort exposed in utero
Women or early childhood

30-39  1950-1970 4 0.42 9.52 (2.56-24.4)

40+ Before 1950 84 21 3.91 (3.12-4.84) _ _
Total e Before 1950 birth cohort exposed later in

30-39 1950-1970 8 1.13 7.08 (3.05-14.0) H

40+ Before 1950 187 60 3.12 (2.69-3.61) ChlldhOOd or ad0|escence

“Standardized mortality ratios with expected mortality estimated from the rest of
Chile excluding Region II.

®Antofagasta and Mejillones used the same water source, containing about 870
ng/L of arsenic, during the period 1958-1970.

Yuan et al. (2010) Epidemiology 21(1):103-8.



Paradigm Shift for Arsenic Epidemiology

* Change in focus of hypotheses

* Chronic disease risk may be programmed during sensitive periods in utero and in early-
life

* Prevention efforts for adult-onset diseases may be better targeted to sensitive periods in
pregnancy, early childhood, or adolescence



BiRCH Cohort

* Bangladesh Environmental Research in Children’s
Health cohort (BiRCH; NIH RO1 ES024423)

* 500 mother-child pairs

* Children aged 5-7 years at enrollment in
2014 -2016

e Data sources include questionnaire data,
clinical assessment, biological specimens




Metals and Biological Aging

* Global public health concern for toxic metal
exposures that are ubiquitous in the
environment

* Arsenic, cadmium, lead, and mercury
exposures in the general population

 Emerging evidence that environmental factors S %

influence biological aging, such as epigenetic ] 1
age and telomere shortening



Objective

To evaluate the cross-sectional associations
of toenail metal concentrations with markers

of biological aging in Bangladeshi children
aged 5-7 years
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Epigenetic Clock

NH, NH,

CH,
* At the molecular level, aging described as the accumulation of f\j\ ’ NN
cellular damage, leading to structural and functional N0 E/KO
abnormalities and decrease the regenerative capacity of cells Cytosine 5-Methylcytosine

* Biological aging reported to be a risk factor for the development
of age-related diseases and increased mortality

LBC1921 Horvath Survival Curves

1.0

* DNA methylation age B
» Sets of DNA methylation markers (CpG sites) representing -;3 ) 1
biological aging g . at
* Highly correlated with chronological age § 'H\. \
* Accelerated by environmental exposures ; L

B Quartie 1: low methydation age acceleration
- B Quartile 4; high methylation age acceleration

0.2

* Higher DNA methylation age relative to chronological age
associated with CVD, cancer, and mortality 8 o5 %

Chronological Age (years)

Marioni R et al. Genome Biol. 2015; 16(1):25.



Epigenetic Age Measures in Children
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de Prado-Bert et al. Environ Int. 2021; 155:106683.



Epigenetic Clock and Children’s Health

e Aging continuous process already
starting in early-life

e Age-associated DNA methylation
changes occur more rapidly in
children than adults (aiisch et ai. 2012)
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de Prado-Bert et al. Environ Int. 2021; 155:106683.



Limited Epidemiologic Research in Children

Table 2
ExWAS* of prenatal and childhood exposures vs. age acceleration adjusted for blood cell type proportions (main model).
ExWAS*
Exposure Exposure family Units Estimate (95% CI) * P-value
Prenatal Maternal tobacco smoking Tobacco smoke No vs. Yes 0.14 (0.02, 0.26) 0.025
Childhood Indoor PM 3 Indoor =ir ug/m> 0.07 (0.02, 0.12) 0.003
Parentzl smoking Tobacco smoke Neither vs. Both 0.15 (0.01, 0.29) 0.036
Dimethyl dithiophosphate (DMDTP) OP Pesticides Undetected vs. Detected (adjusted for creatinine) 0.13(-0.24, -0.02) 0.017
Polychlorinated biphenyl-138 (PCB-138) OCs ng/g (adjusted for lipids) 0.07 (- 0.14, 0.01) 0.037

Note: EXWAS — exposome-wide association study; PM_,_ — Particulate Matter Absorbance, DMDTP — Dimethyl dithiophosphate; OP Pesticides — Organophosphate
Pesticides; PCB-138 — Polychlorinated biphenyl-138; OCs — Organochlorine compounds; IQR — Interquartile range. *Results are presented only for the exposures with
nominal significance (p value < 0.05) in the ExXWAS adjusted for: child’s sex, cohort, self-reported maternal education, self-reported ancestry and maternal age in years.
The analyses were conducted in 1,173 children from the HELIX subcohort. *Coefficient estimates are given in age acceleration effect change for each IQR increase in
continuous exposure variables, or relative to the reference category in binary and categorical variables.

de Prado-Bert et al. Environ Int. 2021; 155:106683.



Study Measures

* Child’s toenail clippings assessed for metal concentrations

* Inductively coupled plasma mass spectrometry (ICP-MS) at Dartmouth College Trace
Element Analysis Core

* Blood leukocyte DNA assessed for DNA methylation

* |llumina EPIC array at the University of Chicago Institute for Population and Precision
Health Laboratory

 DNA methylation data preprocessing and quality control completed using ENmix R
package

* Three epigenetic clock measures estimated: Horvath, Hannum, and PhenoAge



Participant Characteristics

Complete case analysis conducted using 491
participants with available data on toenail
metal concentrations, epigenetic age, and
covariates

Characteristics of participants

Sex
Male 248 (50.5%)
Female 243 (49.5%)
Mean chronological age, years 6.16 (0.55)

Toenail metal concentrations, pg/g Median (IQR)
Arsenic 1.69 (2.04)
Cadmium 0.11 (0.12)
Lead 1.92 (1.68)
Mercury 0.19 (0.17)
Spearman correlation coefficients

Cd 0.22

Pb 0.19 0.43

Hg 0.27 0.21 0.19

As Cd Pb




Horvath

DNA Methylation Age
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Toenail Metals and Epigenetic Age

Arsenic Cadmium
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Effect estimate for IQR increase in toenail metal concentration
Models adjusted for age, sex, body mass index, maternal education, and environmental tobacco smoke



Telomere Length

* Preserve genetic material during cell division and TELOMERE
protect it from damage

* Shortening of telomeres occurs over time with
each cell division

e Shortening eventually leads to cellular
senescence/apoptosis

* Telomere length ¥ common chronic and age-
related diseases, (e.g. CVD, obesity, metabolic

health, cancer)

Repetitive sequences of DNA & binding proteins form
a protective cap on chromosome ends



Telomeres and Children’s Health

* Early childhood is a critical period for telomere
biology

* Rapid decline in telomere length due to a large
turnover of highly proliferative cells

 Telomere length may represent a biomarker of
susceptibility to disease in younger populations

* Environmental insults in early life may have a more
considerable impact on telomere attrition than in
adulthood




Assessment of Telomere Length

DNA hybridization with bead sets for each individual sample plate.

[ REIat|Ve telomere |ength (RTL) Was Bead Set | Bead Set I Bead Set Il Bead Set IV
determined by a novel high-throughput
Luminex assay (Jasmine et al 2018; Kibriya et

al 2014)
* DNA is hybridized to sequence-specific probes Focccceceses
EREOOOOOUC
for the telomere repeat and reference gene e :::;:;;:«:,I?EE;E
OO0
sequences :;::,rg*:*:ooooo

DNA samples from four plates are pooled into one.

* Telomere and reference gene signals are

............................

amplified and detected using Luminex s st oasm i samm wntl
Standardg Sample#1 : Sample#2 §Sample#3 :
° RTL iS Calculated aS telomere Slgnal (red Stars) RSy  Ap—— 4 .............. 3 Beassinen : 38 i 5 § :
divided by reference gene signal (blue circles) M of ALK . 2 3 ’
and normalized to a Standa rd Signal Quantification TEL 1 6/4=1.5 5/4=1.25 8/4=2
Quantification ALK 1 2/2=1 3/2=15 412=2

TQl= TEL/ALK 1 1.51=15 1.25/1.5=0.83 2/2=1



Arsenic and Mercury Associated with Shorter Telomere

Length

Associations of log2-transformed child toenail metals and relative telomere length among
participants

N Adj. covariates® value Adj. covariates, co-exposures® value
b (95% Cl) P b (95% Cl) P
Log,-As, ug/g 455 -0.022 (-0.033,-0.011) 0.0001 -0.019 (-0.031, -0.007) 0.003
Log,- Hg, ug/g 455 -0.020(-0.032,-0.007) 0.0019 -0.015 (-0.028, -0.002) 0.022

2 Adjusted for child age, sex and father’s age at child’s birth
b Adjusted for co-exposures (eg. As model adj for Hg)



Associations with Telomere Length by Sex

Sex-stratified associations? of log2-transformed child toenail metals and relative telomere length among
participants, adjusted for covariates and co-exposure

Males Females
N b (95% Cl) p-value N b (95% Cl) p-value
Log,-As, pg/g 223 -0.013 (-0.030, 0.004) 0.12 232 -0.026 (-0.042, -0.009) 0.002
Log,-Hg, ug/g 223 -0.025 (-0.042, -0.007) 0.007 232 -0.004 (-0.022, 0.013) 0.63

a Adjusted for child age, father’s age at child’s birth, with mutual adjustment for co-exposure to As and Hg



Conclusions

* Higher concentrations of toenail lead and mercury independently associated with
epigenetic age acceleration based on Horvath DNA methylation age

* Higher concentrations of toenail arsenic and mercury independently associated with
shorter telomere length

e Suggests metal exposures may influence biological aging markers in early life

* Evaluating aging during this period might provide new evidence to slow down this
process from the beginning and, prevent or delay the development of adverse health
outcomes during adulthood and elderly
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