

JOINT EFFECTS OF AIR POLLUTION & SOCIAL FACTORS ON CARDIOVASCULAR HEALTH USING A CBPR APPROACH

Christina H. Fuller, ScD, SM

Associate Professor

Georgia State University School of Public Health

Presentation to the University of Kentucky's Center for Appalachian Research in Environmental Science September 15, 2021

Need	Daily Amount	Maximum Deprivation
Food		
Water		
Air		

CARDIOVASCULAR EFFECTS

Boston Puerto Rican Health Study (BPRHS)

- Established group of researchers and community partners comprised the Boston Puerto Rican Center for Population Health and Health Disparities (2003-2017) now based at the UMass Lowell Center for Population Health (UML-CPH).¹
 - The BPRHS was focused on the role of stress on physical disability, cognitive decline and metabolic conditions.²
 - The project was broadened to evaluate air pollution as an important environmental risk factor for disease.
- Aim 1: Test the association between particulate air pollution and cardiovascular disease markers in the BPRHS.
- Aim 2: Evaluate effect modification by psychosocial stressors.

REVIEW

(CrossMark

Air pollution, cardiovascular endpoints and susceptibility by stress and material resources: a systematic review of the

¹ https://www.uml.edu/Research/UML-CPH/

² Tucker *et al.* The Boston Puerto Rican Health Study, a longitudinal cohort study or evidence disparities in Puerto Rican adults: challenges and opportunities. BMC public health. Christina H. Fuller^{1*}, Karla R. Feeser¹, Jeremy A. Sarnat² and Marie S. O'Neill³

Age-adjusted percentage of adults aged 18 and over who were in fair or poor health, by ethnicity and Hispanic subgroup: United States, 2010–2014

Table 2: Repeated measures for cardiovascular and stress markers in the Boston Puerto Rican Health Study (BPRHS) (N=1499)

	Baseline	2 year	5 year	Intra-
Characteristic	Mean (SD)	Mean (SD)	Mean (SD)	Class
	(N=1499)	(N=1258)	(N=891)	Correlation
Cardiovascular health markers				
Systolic blood pressure (mmHg)	134.9 (19.2)	135.8 (13.9)	134.1 (18.5)	0.53
C-reactive protein (mg/L)	6.3 (8.7)	6.3 (11.5)	6.9 (9.8)	0.39
Paper based stress measures				
Depression score	20.3 (13.2)	18.2 (12.5)	16.5 (11.1)	0.53
Perceived stress scale	23.6 (9.4)	22.9 (8.7)	27.1 (7.2)	0.27

³ Fuller CH *et al.* Sex differences in the interaction of short-term particulate matter exposure and psychosocial stress on C-reactive protein in a Puerto Rican cohort. Social Science & Medicine- Population Health 2019; 9: 100500.

Findings: C-reactive protein

Adjusted for age, sex, waist-hip ratio, diabetes and medications.

Fuller CH *et al*. Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors. Atmospheric environment 2012, 57:257-265.

Findings: Systolic blood pressure

Systolic Blood Pressure

Adjusted for age, sex, waist-hip ratio, education and medications.

Fuller CH *et al*. Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors. Atmospheric environment 2012, 57:257-265.

Possible modification by psychosocial stressors

³ Fuller CH et al. Sex differences in the interaction of short-term particulate matter exposure and psychosocial stress

on C-reactive protein in a Puerto Rican cohort. Social Science & Medicine- Population Health 2019; 9: 100500.

Interpretation

- Increases in UFP were associated with higher levels of cardiovascular markers: C-reactive protein and systolic blood pressure.
- Effects were stable across exposure periods, contrary to some past studies^{3,4}
- Sources of variation remain in this population based on indicators such as perceived stress and depression.
- Further examination can yield insight into susceptibilities and opportunities for interventions.

¹ Hertel S *et al*. **Influence of short-term exposure to ultrafine and fine particles on systemic inflammation.** European journal of epidemiology 2010, 25(8):581-592.

² Fuller CH *et al*. Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors. Atmospheric environment 2012, 57:257-265.

³ Fuller CH *et al.* **Sex differences in the interaction of short-term particulate matter exposure and psychosocial stress on C-reactive protein in a Puerto Rican cohort.** Social Science & Medicine- Population Health 2019; 9: 100500.

AIR POLLUTION DISPARITIES

Annual mean concentrations of fine particulate matter (PM2.5) in urban areas (µg/m3), 2014*

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. Data Source: World Health Organization Map Production: Information Evidence and Research (IER) World Health Organization

© WHO 2016. All rights reserved.

Roadway Sources of Annual Average PM_{2.5} (µg/m³)

Atlanta Roadside Emissions Exposure Study, Atlanta Regional Commission

Reasons for air pollution disparities

Concentration of industry

- Redlining
- Land pricing
 - Zoning
- Historically poor and minority communities are close to sources

The Environmental Justice movement

EJ Movement

Environmental Justice purpose

OPPORTUNITIES THROUGH COMMUNITY ENGAGEMENT

Principles of Environmental Justice

- 5) Environmental Justice affirms the fundamental right to political, economic, cultural and environmental self-determination of all peoples.
- 7) Environmental Justice demands the right to participate as equal partners at every level of decision-making, including needs assessment, planning, implementation, enforcement and evaluation.
- 16) Environmental Justice calls for the education of present and future generations which emphasizes social and environmental issues, based on our experience and an appreciation of our diverse cultural perspectives.

Community involvement can range from outreach to research collaboration.

In community-based participatory research, community members share leadership as equals or lead the research.

COMMUNITY ASSESSMENT **OF FREEWAY EXPOSURE AND HEALTH (CAFEH)**

Five-year cross-sectional study of ultrafine particle concentrations near a highway and markers of inflammation and blood pressure.

Community-based Participatory Research study (CBPR)

<u>Neighborhoods</u> <u>involved</u> Somerville South Boston/Dorchester Chinatown/Malden

www.cafehresearch.org

New housing next to the I-93 tunnel exit

Pollution Monitoring

Monitored pollutants and parameters

 Particle concentration and size, PM mass, wind speed, wind direction, temperature, humidity

 Stationary, mobile and residential monitoring

Interactive Map of Chinatown Traffic Pollution

Estimated Health Impacts from UFP

179

K.J. Lane et al. / Environment International 92-93 (2016) 173-182

Condition	Expected cases over 5 years		
Coronary heart disease (CHD)	22 (0-52)		
Death from CHD	44 (17-78)		
Ischemic stroke	32 (1 to 78)		
Death post-stroke	5 (0 to 11)		
Type 2 diabetes	1 (7 to 256)		
Lung cancer	16 (2 to 36)		
Childhood asthma	52 (3 to 138)		
Childhood autism	4 (0 to 11)		

Approximately 60 journal articles on UFP monitoring and modeling, exposure assessment, environmental justice, health literacy, Reviews, Methods, Policy and CBPR

Brugge D, Fuller CH editors: Ambient Combustion-Related Ultrafine Particles and Health. 1st edition. Hauppauge, NY: Nova Science Publishers; 2021.

Trees as an intervention

Measure the differences in particulate matter next to tree barrier sites, combination sites (tree and sound barrier sites) and sites without barriers.

Link

Recommendations for Constructing Roadside Vegetation Barriers to Improve Near-Road Air Quality

Table 1: Average particle number comparing roadside and behind barrier locations at multiple sites in the Atlanta (USA) metropolitan area

					Absolute	Percent
		Barrier	Roadside	Barrier	difference	difference
Site	Date	type	mean(sd)	mean(sd)	behind barrier	behind barrier
S1	7/17/2020	Tree	6,965 (2,519)	6,768 (2,234)	-197	-2.9%
S1	7/22/2020	Tree	19,345 (15,613)	20,373 (18,514)	1027	5.0%
S1	7/24/2020	Tree	22,974 (14,547)	15,748 (9,915)	-7225	-45.9%
S1	9/3/2020	Tree	15,938 (10,975)	15,489 (9,491)	-449	-2.9%
S3	9/8/2020	Combo	10,136 (4,059)	10,902 (2,016)	-63	-0.6%
S3	8/20/2020	Combo	7,982 (2,456)	7,234 (1,807)	-747	-10.3%
S5	9/1/2020	Tree	5,800 (981)	7,067 (3,213)	1266	17.9%
S5	8/27/2020	Tree	29,848 (11,869)	27,176 (12,887)	-2672	-9.8%

Benefits of CBPR

for the Community

1) Demystify science and enhance citizen understanding

Increase scientific literacy -> people will appreciate science when it is for and with the people

3) Empower the community to take action

Challenges

- Time, time, time!
- Balancing research and community priorities
- Long-term versus short-term goals

for the Research

- A) Pursue relevant research questions
- B) Incorporate specific knowledge concerning exposures and outcomes
- C) Catalyze solutions that can be more readily adapted by communities
 - Changing the power dynamics
 - Resource sharing
 - Respect from the scientific community

Environmental Health Sciences R21 ES029252 01A1

"I GUESS YOU HEARD THE AIR QUALITY WARNINGS?"

CartoonStock.com

