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A B S T R A C T   

Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerosis. However, its impact on non- 
atherosclerotic cardiovascular diseases remains largely unknown. Glycosylphosphatidylinositol anchored high- 
density lipoprotein binding protein 1 (GPIHBP1) is essential for the hydrolysis of circulating triglycerides and 
loss of functional GPIHBP1 causes severe HTG. In this study, we used Gpihbp1 knockout (GKO) mice to inves-
tigate the potential effects of HTG on non-atherosclerotic vascular remodeling. We compared the aortic 
morphology and gene expressions between three-month-old and ten-month-old GKO mice and their age-matched 
wild-type controls. We also conducted similar comparisons between GKO mice and wild-type controls in an 
angiotensin II (AngII)-induced vascular remodeling model. Our data showed that the intima-media wall of ten- 
month-old GKO mice but not three-month-olds was significantly thickened compared to wild-type controls. 
Moreover, ten-month-old GKO mice but not three-month-olds had increased aortic macrophage infiltration and 
perivascular fibrosis, along with increased endothelial activation and oxidative stress. Similarly, the AngII- 
induced vascular remodeling, as well as endothelial activation and oxidative stress, were also exacerbated in 
the GKO mice compared to wild-type controls. In conclusion, we demonstrated that severe HTG caused by 
Gpihbp1 deficiency could facilitate the onset and progression of non-atherosclerotic vascular remodeling through 
endothelial activation and oxidative stress in mice.   

1. Introduction 

Hypertriglyceridemia (HTG) is commonly defined as a fasting serum 
triglyceride level ≥ 150 mg/dL (≥1.7 mmol/L) and a non-fasting tri-
glyceride level ≥ 200 mg/dL by the American Heart Association [1] or ≥
175 mg/dL by the European Atherosclerosis Society [2]. It is usually not 
an isolated condition, but is often accompanied by other metabolic 
disorders, such as hypercholesterolemia, obesity, and diabetes mellitus; 
thus, its impacts on the cardiovascular system have been underestimated 

for almost half a century. In the past two decades, increasing large-scale 
clinical studies have supported a close association between HTG and 
atherosclerotic cardiovascular diseases [3–8]. The causal effects of HTG 
on atherosclerosis have also been demonstrated in genetically- 
manipulated small animals (such as mice and hamsters) as well as in 
medium-to-large animals (such as rabbits and pigs) [9]. However, most 
clinical and experimental studies involving HTG have focused on 
atherosclerotic cardiovascular diseases, and little is known about the 
pathogenic effects of HTG on non-atherosclerotic cardiovascular 
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pathology. 
Triglycerides (TGs) are insoluble in an aqueous phase and thus are 

transported in APOB-containing lipoproteins, such as chylomicrons, 
very-low-density lipoproteins, and their remnants, referred to as TG- 
enriched lipoproteins (TRLs) [9]. HTG is caused by either increased 
synthesis of TG or decreased lipolysis of TG in TRLs, or both [9]. Lipo-
protein lipase (LPL), mainly secreted by adipocytes and myocytes, is the 
key enzyme for TRL lipolysis, which converts TG into fatty acids for 
tissue utilization as energy substrates [10]. 
Glycosylphosphatidylinositol-anchored high-density lipoprotein- 
binding protein 1 (GPIHBP1), exclusively expressed in capillary endo-
thelial cells, is an essential partner for LPL: it transports LPL from the 
subendothelial spaces to the capillary lumen, where it serves as the 
platform for LPL-mediated TRL lipolysis by binding LPL and TRLs to 
capillary endothelial cells [11,12]. Additionally, LPL-mediated TRL 
lipolysis is regulated by other co-factors, such as apolipoprotein (APO) 
C2, APOC3, APOA5, and angiopoietin-like proteins (ANGPTL3 and 
ANGPTL4) [13,14]. Genetic defects involving LPL, GPIHBP1, and these 
co-factors all disrupt TG homeostasis and cause severe HTG [13,14]. 

In this study, we aimed to explore the association between HTG and 
the onset and progression of non-atherosclerotic vascular remodeling, 
using Gpihbp1 knockout (KO) mice as HTG models. Our result demon-
strated that severe HTG caused by Gpihbp1 deficiency led to spontaneous 
vascular remodeling in mice, and further exacerbated hypertensive 
vascular remodeling induced by angiotensin II (AngII), highlighting a 
potential causal role of HTG in non-atherosclerotic vasculopathy. 
Moreover, we showed that severe HTG caused by Gpihbp1 deficiency 
stimulated endothelial activation and oxidative stress, which might at 
least partially contribute to the vascular remodeling in mice. 

2. Materials and methods 

2.1. Animals 

Male Gpihbp1 knockout (GKO) mice (C57BL/6 J background) and 
their sex-matched control wild-type littermates (Ctrls) were generated 
by heterozygous crosses as previously described [15]. Genotyping was 
performed by PCR analysis of the genomic DNA extracted from the tails. 

All mice were housed in individually ventilated cages and main-
tained on a 12-h light/12-h dark cycle with free access to a rodent chow 
diet and sterilized water. All experimental procedures were conducted in 
accordance with the NIH Guide for the Care and Use of Laboratory 
Animals and were approved by the Animal Care and Use Committee of 
Dalian Medical University. 

2.2. Hypertension induction and measurement of blood pressure 

Hypertension in mice was induced by subcutaneous AngII infusion at 
a dosage of 1000 ng/kg/min using osmotic mini-pumps (Alzet MODEL 
1007D; Durect Corp, Cupertino, CA, USA) [16], while normotension 
controls were administered with the same dosage of saline infusion. 
Systolic blood pressure (SBP) was measured with a tail-cuff instrument 
(BP-98A; Softron, Japan) and averaged from 10 records as previously 
described [16]. Mice were sacrificed after two weeks on AngII or saline 
infusion. 

2.3. Serum lipid and glucose assay 

Blood samples were collected by retro-orbital plexus puncture after 
an overnight fast, and serum was separated by centrifugation at 4000 
rpm for 10 min at 4 ◦C. Serum total cholesterol (TC), triglycerides (TG), 
and glucose (GLU) concentrations were measured with commercial 
enzymatic kits (BioSino, Beijing, China). 

2.4. Histomorphological analysis 

Mice were euthanized by a lethal dose of anesthesia and flushed with 
PBS through the left ventricular. Whole aortas from the base ascending 
aorta to the iliac bifurcation were collected and quickly rid of the per-
ivascular adhering tissues in ice-cold PBS. The upper one-third of the 
thoracic aortas (approximately 1 mm long) were fixed in 4 % para-
formaldehyde (Life-iLab, Shanghai, China) overnight, embedded in O.C. 
T. compound (Sakura Finetek, Torrance, USA), and cyto-sectioned into 
5 μm thick slices for histological analysis, while the remaining parts of 
the aortas were pooled and stored in − 80 ◦C for RNA extraction. He-
matoxylin and eosin (H&E) staining (G1120; Solarbio, Beijing, China) 
and Masson's trichrome staining (G1340; Solarbio, Beijing, China) were 
performed using commercial kits according to the manufacturer's in-
structions. Intima-media thickness was defined as the distance from the 
endothelial surface to the adventitia and averaged from five different 
fields of the aortic ring for each mouse. Dihydroethidium (DHE, 1μM; 
Sigma-Aldrich, St. Louis, MO, USA) staining was performed as previ-
ously described [17]. Immunofluorescent staining was performed using 
antibodies against Mac-2 (diluted at 1:200; ARG66239, Arigo), MCP-1 
(diluted at 1:100, AF7437, Beyotime), VCAM-1 (diluted at 1:100; 
ARG42059, Arigo) and ICAM-1 (diluted at 1: 200; ab222736, Abcam). 
All quantifications were performed with Image J software. 

2.5. Quantitative real-time PCR analysis 

Aortic total RNA was extracted using TriQuick Reagent (R1100; 
Solarbio, Beijing, China) and reverse-transcribed to cDNA with the 
PrimeScript RT Reagent Kit (11141ES60; Yeasen, Shanghai, China). 
Quantitative real-time PCR was performed with SYBR Green qPCR re-
agents (11184ES03; Yeasen, Shanghai, China), using primers listed in 
Table 1. All samples were quantitated using the comparative CT method 
and normalized to β-actin levels. 

2.6. Statistical analysis 

All data were presented as mean ± standard deviation. The Shapir-
o–Wilk test was used to assess data normality. Statistical comparisons 
were conducted using two-way ANOVA followed by Tukey's test or the 
Mann-Whitney U test for nonparametric data with GraphPad Prism 
software. A p value <0.05 was considered statistically significant. 

Table 1 
Primer sequences used in the study.  

Name Type Sequence (5′ - 3′) 

Cd68 Forward TGTCTGATCTTGCTAGGACCG 
Reverse GAGAGTAACGGCCTTTTTGTGA 

Il-1β Forward TGCCACCTTTTGACAGTGATG 
Reverse TGATGTGCTGCTGCGAGATT 

Il-6 Forward TGATGGATGCTACCAAACTGGA 
Reverse TGTGACTCCAGCTTATCTCTTGG 

α-sma Forward TCCTGACGCTGAAGTATCCGATA 
Reverse GGCCACACGAAGCTCGTTAT 

Col1 Forward GAGAGGTGAACAAGGTCCCG 
Reverse AAACCTCTCTCGCCTCTTGC 

Col3 Forward TCCCCTGGAATCTGTGAATC 
Reverse TGAGTCGAATTGGGGAGAAT 

Mcp-1 Forward TAAAAACCTGGATCGGAACCAAA  
Reverse GCATTAGCTTCAGATTTACGGGT 

Vcam-1 Forward TTGGGAGCCTCAACGGTACT 
Reverse GCAATCGTTTTGTATTCAGGGGA 

Icam-1 Forward GCCTGGCATTTCAGAGTCTGCT 
Reverse AAACCAGACCCTGGAACTGCAC 

Nox2 Forward CTTCTTGGGTCAGCACTGGC 
Reverse GCAGCAAGATCAGCATGCAG 

Nox4 Forward CTTGGTGAATGCCCTCAACT 
Reverse TTCTGGGATCCTCATTCTGG 

β-actin Forward GGCTGTATTCCCCTCCATCG 
Reverse CCAGTTGGTAACAATGCCATGT  
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3. Results 

3.1. Severe HTG in the Gpihbp1 KO mice 

The Gpihbp1 KO mice are born with familial chylomicronemia due to 
the loss of functional GPIHBP1 protein and disruption of LPL-mediated 
TRL lipolysis. As expected, the serum of three-month-old Gpihbp1 KO 
mice exhibited a milky appearance (Fig. 1A), and the serum TG levels 
were remarkably elevated, approximately 50-fold higher than age- 
matched wild-type controls (Fig. 1B). The Gpihbp1 KO mice also devel-
oped hypercholesterolemia, with serum total cholesterol (TC) levels 
two-fold higher than wild-type controls (Fig. 1C). The severe HTG 
observed in adult Gpihbp1 KO mice did not progress with age, as the 
serum TG levels of ten-month-old Gpihbp1 KO mice were comparable to 
those of three-month-olds (Fig. 1B). However, the serum TC levels in 
ten-month-old Gpihbp1 KO mice were slightly higher than those of three- 
month-olds (Fig. 1C). Notably, the serum glucose levels of Gpihbp1 KO 
mice did not differ significantly from those of wild-type controls, 
regardless of age (three months or ten months) (Fig. 1D). 

3.2. Severe HTG caused by Gpihbp1 deficiency led to spontaneous 
vascular remodeling in mice 

Wild-type mice, with their high-density lipoprotein-dominant lipid 

profile, are naturally resistant to developing atherosclerosis. However, 
severe hypertriglyceridemic Gpihbp1 KO mice begin to present mild 
early atherosclerosis at the aortic root when they reach eleven-to-twelve 
months of age [18]. To investigate the effects of HTG on non- 
atherosclerotic vasculopathy, we therefore evaluated the histo-
morphology of the thoracic aorta ring and gene expression in the aorta 
of severe hypertriglyceridemic Gpihbp1 KO mice and normotriglyceri-
demic wild-type control mice at three and ten months of age. H&E 
staining revealed that the intima-media wall thickness of three-month- 
old Gpihbp1 KO mice did not differ significantly from that of age- 
matched controls. However, when the mice reached ten months of 
age, the intima-media wall of Gpihbp1 KO mice was significantly 
thickened, compared with that of control mice (Fig. 2A). Mac-2 immu-
nofluorescent staining showed that ten-month-old Gpihbp1 KO mice had 
more macrophages accumulated in their thoracic aortas than age- 
matched wild-type controls, whereas three-month-old Gpihbp1 KO 
mice did not exhibit this phenomenon (Fig. 2B). This observation was 
further confirmed by increased expression of the aortic macrophage 
marker gene (Cd68) and macrophage-derived pro-inflammatory cyto-
kines (Il-1β and Il-6) in ten-month-old Gpihbp1 KO mice, as determined 
by quantitative real-time PCR (Fig. 2C). Similarly, Masson staining in 
combination with higher aortic α-sma and Collagen (Col) 1/3 expression 
revealed increased perivascular fibrosis in ten-month-old Gpihbp1 KO 
mice, but not in three-month-olds (Fig. 2D and E). Taken together, these 

Fig. 1. Gpihbp1 deficiency induced severe HTG. (A) Serum appearance of three-month-old Gpihbp1 KO mice (right) and their matched littermates (left); (B) Fasting 
serum triglycerides levels; (C) Fasting serum total cholesterol levels; (D) Fasting serum glucose levels. 
n = 5 per group. *: p < 0.05, ***: p < 0.001, ns: no significance. 
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Fig. 2. Severe HTG caused by Gpihbp1 deficiency led to spontaneous vascular remodeling in mice. (A) H&E staining of the thoracic aortic rings and quantification of 
the intima-media wall thickness; (B) Mac-2 immunofluorescent staining of the thoracic aortic rings and quantification of the Mac-2 positive area; (C) RT-qPCR 
analysis showing aortic Cd68, Il-1β, and Il-6 gene expressions; (D) Masson staining of the thoracic aortic rings and quantification of the fibrotic area; (E) RT- 
qPCR analysis showing aortic α-sma, Col1, and Col3 gene expressions. 
n = 4–5 per group. *: p < 0.05, **: p<0.01, ***: p < 0.001, ns: no significance. 
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results suggest that middle-aged Gpihbp1 KO mice have already devel-
oped vascular remodeling with signs of increased aortic stiffness. 

3.3. Endothelial activation and oxidative stress contributed to 
spontaneous vascular remodeling in the severe hypertriglyceridemic 
Gpihbp1 KO mice 

The release of monocyte chemoattractive and adhesive molecules, 
such as MCP-1, VCAM-1, and ICAM-1, are commonly used as an indi-
cator of endothelial activation. Here we demonstrated that ten-month- 
old Gpihbp1 KO mice, but not three-month-old mice, expressed higher 
levels of MCP-1, VCAM-1, and ICAM-1, as evidenced by immunofluo-
rescent staining and gene expression analysis, compared to their age- 
matched control mice (Fig. 3A–D). Additionally, we evaluated aortic 
oxidative stress levels using DHE staining and expression of NADPH 
oxidases (NOXs). We found that the DHE immunofluorescent intensity in 
ten-month-old Gpihbp1 KO mice, but not three-month-old, was signifi-
cantly higher than that of age-matched wild-type controls (Fig. 3E and 
F). Moreover, the expression of Nox2 and Nox4, two major subunits of 
aortic Noxs, were also increased in ten-month-old Gpihbp1 KO mice, but 
not three-month-old mice, compared to their age-matched wild-type 
controls (Fig. 3G). These findings indicate that endothelial activation 
and oxidative stress may contribute to the spontaneous vascular 
remodeling observed in middle-aged Gpihbp1 KO mice. 

3.4. Severe HTG caused by Gpihbp1 deficiency aggravated AngII-induced 
vascular remodeling 

We next explored whether severe HTG in the Gpihbp1 KO mice could 
contribute to stress-induced vascular remodeling. We infused eight- 
week-old Gpihbp1 KO mice and age-matched wild-type controls with 
AngII (1000 ng/kg/min) for two weeks to induce hypertension and 
hypertensive vascular remodeling. We found no significant difference in 
blood pressure between severe hypertriglyceridemic Gpihbp1 KO mice 
and wild-type controls during AngII infusion (Supplemental Fig. 1). 
However, H&E staining revealed that AngII infusion induced significant 
intima-media thickening, which was further exacerbated in severe 
hypertriglyceridemic Gpihbp1 KO mice compared to wild-type controls 
(Fig. 4A). Additionally, AngII-induced macrophage infiltration and 
perivascular fibrosis, as indicated by Mac-2 immunofluorescent staining 
(Fig. 3B) and Masson staining (Fig. 3D), were also more pronounced in 
severe hypertriglyceridemic Gpihbp1 KO mice. Consistently with these 
findings, the aortic expression of the macrophage marker gene (Cd68) 
and pro-inflammatory cytokines (Il-1β and Il-6) (Fig. 4C), as well as 
collagen-associated genes (α-sma, Col1, and Col3) (Fig. 4E), were all 
increased in severe hypertriglyceridemic Gpihbp1 KO mice. 

3.5. Severe HTG caused by Gpihbp1 deficiency aggravated AngII-induced 
endothelial activation and oxidative stress 

Endothelial activation and oxidative stress are two pivotal factors 
that contribute to AngII-induced vascular remodeling. Here, we 
demonstrated that the infusion of AngII led to a significant increase in 
the expression of MCP-1, VCAM-1, and ICAM-1 in the aorta, as evi-
denced by immunofluorescent stainings and gene expression analysis, 
which was more pronounced in severe hypertriglyceridemic Gpihbp1 KO 
mice (Fig. 5A–D). Similarly, AngII-induced oxidative stress in the aorta 
was also exacerbated in severe hypertriglyceridemic Gpihbp1 KO mice, 
as indicated by increased DHE intensity (Fig. 5E and F) and aortic gene 
expression of Nox2 and Nox4 (Fig. 5G). These findings suggested that 
severe HTG may enhance AngII-induced endothelial activation and 
oxidative stress during stress-induced vascular remodeling. 

4. Discussion 

In this study, we demonstrated that (1) severe HTG caused by 

Gpihbp1 deficiency led to spontaneous vascular remodeling, including 
intima-media thickening, increased pro-inflammatory macrophage 
infiltration, and perivascular fibrosis; (2) severe HTG caused by Gpihbp1 
deficiency exacerbated AngII-induced hypertensive vascular remodeling 
without affecting blood pressure; (3) severe HTG caused by Gpihbp1 
deficiency induced endothelial activation and oxidative stress to facili-
tate vascular remodeling. 

The vessel wall is a dynamic system composed of endothelial cells, 
vascular smooth muscle cells, and fibroblast cells [19]. It is capable of 
sensing mechanical and metabolic stimulations (such as hypertension, 
hyperlipidemia, and diabetes mellitus) within its milieu and integrating 
these signals into the production of mediators that consequently alter its 
structure and function [20]. This process, known as vascular remodel-
ing, is a well-established pathological basis of vascular diseases, 
including atherosclerosis, hypertension, aortic aneurysms, and diabetic 
vascular complications [20]. Both clinical and experimental evidence 
has indicated that HTG plays a critical role in atherosclerotic vascular 
remodeling [21]. In carotid stenosis patients underwent carotid endar-
terectomy or carotid artery stenting, HTG is identified as a residual risk 
for the progression of atherosclerotic carotid stenosis and precedes ca-
rotid restenosis after successful revascularization [22–25]. In patients 
with type 2 diabetes mellitus, postprandial HTG is closely associated 
with carotid intima-media thickness, an early sign predicting athero-
sclerosis development [26,27]. In diabetic mice, severe HTG caused by 
Gpihbp1 deficiency accelerates atherosclerosis and leads to vascular 
dilated remodeling [15]. Furthermore, the reduction of HTG in hyper-
triglyceridemic mouse models by interventional APOC3 lowering using 
an APOC3 antisense oligonucleotide reduces atherosclerotic lesion 
progression and improves plaque stability by reducing necrotic core area 
and increasing fibrous cap thickness [28]. In contrast, the effects of HTG 
on non-atherosclerotic vascular remodeling are still not well under-
stood. Here in this study, we found that severe HTG caused by Gpihbp1 
deficiency led to spontaneous vascular remodeling, and promoted stress- 
induced vascular remodeling in mice. Our findings provide preliminary 
evidence that increased circulating triglyceride levels might be a po-
tential risk factor for vascular remodeling. Further studies, however, are 
needed to confirm the pathogenic and causative effects of HTG on the 
onset and progression of vascular remodeling. 

Although all types of vascular cells are potential active players in the 
vascular remodeling process, the endothelial cells, which form a 
monolayer on the interior walls of vasculatures, are the first-line sensor 
to alterations in the vascular milieu due to their unique localization 
[29]. Upon exposure to mechanical and metabolic stresses, these cells 
not only adjust the release of relaxing and contracting factors (such as 
nitric oxide, prostacyclin, and endothelin) to control vascular tone and 
blood flow, but also secret multiple pro-inflammatory cytokines, such as 
MCP-1, VCAM-1 and ICAM-1, to facilitate the recruitment and adhesion 
of inflammatory cells for defense or repair reactions, a process known as 
endothelial activation [29]. Mounting evidence has indicated endothe-
lial activation as the initial event in almost all types of vascular pa-
thologies including atherosclerosis, aging-related and stress-induced 
vascular remodeling. Previously, endothelial activation is demonstrated 
to contribute to HTG-aggravated atherosclerosis [15,30–33]. Here in 
this study, we showed signs of endothelium activation involving in the 
spontaneous and AngII-induced hypertensive vascular remodeling in the 
severe hypertriglyceridemic Gpihbp1 KO mice, indicating a contribution 
of endothelium activation to the onset and progression of HTG- 
associated vascular remodeling. Further studies, however, are needed 
to elucidate how HTG activates endothelium and therefore promotes 
non-atherosclerotic vascular pathologies. 

Similar to endothelium activation, oxidative stress is another key 
contributor to almost all types of vascular pathologies [34,35]. Due to an 
imbalance between reactive oxygen species (ROS) generation and 
antioxidant defense, oxidative stress leads to the accumulation of free 
radicals and oxygen metabolites (such as superoxide, hydrogen 
peroxide, hydroxyl radical as well as the nitric oxide radical and 
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Fig. 3. Severe HTG caused by Gpihbp1 deficiency activated endothelial cells and induced aortic oxidative stress in mice. (A) MCP-1 immunofluorescent staining of 
the thoracic aortic rings and quantification of MCP-1 positive area; (B) VCAM-1 immunofluorescent staining of the thoracic aortic rings and quantification of VCAM-1 
positive area; (C) ICAM-1 immunofluorescent staining of the thoracic aortic rings and quantification of ICAM-1 positive area; (D) RT-qPCR analysis showing aortic 
Mcp-1, Vcam-1, and Icam-1 gene expressions; (E) DHE staining of the thoracic aortic rings and quantification of the fluorescence intensity; (G) RT-qPCR analysis 
showing aortic Nox2 and Nox4 gen expressions. 
n = 4–5 per group. *: p < 0.05, **: p<0.01, ***: p < 0.001, ns: no significance. 
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Fig. 4. Severe HTG caused by Gpihbp1 deficiency promoted AngII-induced vascular remodeling in mice. (A) H&E staining of the thoracic aortic rings and quanti-
fication of the intima-media wall thickness; (B) Mac-2 immunofluorescent staining of the thoracic aortic rings and quantification of the Mac-2 positive area; (C) RT- 
qPCR analysis showing aortic Cd68, Il-1β, and Il-6 gene expressions; (D) Masson staining of the thoracic aortic rings and quantification of the fibrotic area; (E) RT- 
qPCR analysis showing aortic α-sma, Col1, and Col3 gene expressions. 
n = 5 per group. *: p < 0.05, **: p<0.01, ***: p < 0.001, ns: no significance. 
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Fig. 5. Severe HTG caused by Gpihbp1 deficiency promoted AngII-induced endothelial activation and oxidative stress in mice. (A) MCP-1 immunofluorescent staining 
of the thoracic aortic rings and quantification of MCP-1 positive area; (B) VCAM-1 immunofluorescent staining of the thoracic aortic rings and quantification of 
VCAM-1 positive area; (C) ICAM-1 immunofluorescent staining of the thoracic aortic rings and quantification of ICAM-1 positive area; (D) RT-qPCR analysis showing 
aortic Mcp-1, Vcam-1, and Icam-1 gene expressions; (E) DHE staining of the thoracic aortic rings and quantification of the fluorescence intensity; (G) RT-qPCR analysis 
showing aortic Nox2 and Nox4 gen expressions. 
n = 5 per group. *: p < 0.05, **: p<0.01, ***: p < 0.001, ns: no significance. 
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peroxynitrite), finally disrupting redox signaling and causing cellular 
damages [36]. NADPH oxidases (NOXs) are one of the major ROS- 
generating systems in living cells [37] and indeed have been known as 
the primary source of oxidative stress in vascular diseases, such as 
atherosclerosis [38,39], hypertension [40,41], aortic aneurysms [42,43] 
and diabetic vascular complications [38,39]. Activation of NOXs has 
been shown to activate other ROS-generating systems, such as the 
uncoupled endothelial nitric oxide synthase, dysfunctional mitochon-
dria, and xanthine oxidase, inducing secondary sources of ROS pro-
duction [37]. In addition, the over-activation of NOXs also stimulates 
the endothelium to start pro-inflammatory cascades [34,35]. Here we 
demonstrated the involvement of oxidative stress as shown by DHE 
staining and increased Noxs gene expression in the spontaneous and 
stress-induced vascular remodeling in the severe hypertriglyceridemic 
Gpihbp1 KO mice; however, how HTG causes oxidative stress and 
whether oxidative stress further activates the endothelium to promote 
the non-atherosclerotic vasculopathy are not explained in the current 
study and need further explorations. 

In conclusion, our study demonstrated that severe HTG caused by 
Gpihbp1 deficiency led to spontaneous vascular remodeling and exac-
erbated AngII-induced hypertensive vascular remodeling in mice. 
Moreover, we showed that severe HTG caused by Gpihbp1 deficiency 
stimulated endothelial activation and oxidative stress, which might at 
least partially contribute to vascular remodeling in mice. These findings 
indicate that HTG might facilitate the onset and progression of non- 
atherosclerotic vascular remodeling through endothelial activation 
and oxidative stress. Further studies, however, are needed to confirm the 
pathogenic effects and elucidate the underlying mechanisms of HTG on 
vascular remodeling in other animal models and patients. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bbalip.2023.159330. 
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